Poly-antimatroid polyhedra
Ars Mathematica Contemporanea, Tome 7 (2014) no. 1, pp. 73-82.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The notion of “antimatroid with repetition” was conceived by Bjorner, Lovasz and Shor in 1991 as an extension of the notion of antimatroid in the framework of non-simple languages. Further they were investigated by the name of “poly-antimatroids” (Nakamura, 2005, Kempner Levit, 2007), where the set system approach was used. If the underlying set of a poly-antimatroid consists of n elements, then the poly-antimatroid may be represented as a subset of the integer lattice Zn. We concentrate on geometrical properties of two-dimensional (n = 2) poly-antimatroids - poly-antimatroid polygons, and prove that these polygons are parallelogram polyominoes. We also show that each two-dimensional poly-antimatroid is a poset poly-antimatroid, i.e., it is closed under intersection.The convex dimension cdim(S) of a poly-antimatroid S is the minimum number of maximal chains needed to realize S. While the convex dimension of an n-dimensional poly-antimatroid may be arbitrarily large, we prove that the convex dimension of an n-dimensional poset poly-antimatroid is equal to n.
DOI : 10.26493/1855-3974.263.eb4
Keywords: antimatroid, polyhedron, convex dimension, lattice animal, polyomino
@article{10_26493_1855_3974_263_eb4,
     author = {Yulia Kempner and Vadim E. Levit},
     title = {Poly-antimatroid polyhedra},
     journal = {Ars Mathematica Contemporanea},
     pages = {73--82},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     doi = {10.26493/1855-3974.263.eb4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.263.eb4/}
}
TY  - JOUR
AU  - Yulia Kempner
AU  - Vadim E. Levit
TI  - Poly-antimatroid polyhedra
JO  - Ars Mathematica Contemporanea
PY  - 2014
SP  - 73
EP  - 82
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.263.eb4/
DO  - 10.26493/1855-3974.263.eb4
LA  - en
ID  - 10_26493_1855_3974_263_eb4
ER  - 
%0 Journal Article
%A Yulia Kempner
%A Vadim E. Levit
%T Poly-antimatroid polyhedra
%J Ars Mathematica Contemporanea
%D 2014
%P 73-82
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.263.eb4/
%R 10.26493/1855-3974.263.eb4
%G en
%F 10_26493_1855_3974_263_eb4
Yulia Kempner; Vadim E. Levit. Poly-antimatroid polyhedra. Ars Mathematica Contemporanea, Tome 7 (2014) no. 1, pp. 73-82. doi : 10.26493/1855-3974.263.eb4. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.263.eb4/

Cité par Sources :