On fat Hoffman graphs with smallest eigenvalue at least -3
Ars Mathematica Contemporanea, Tome 7 (2014) no. 1, pp. 105-121.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We investigate fat Hoffman graphs with smallest eigenvalue at least −3, using their special graphs. We show that the special graph S(Ho) of an indecomposable fat Hoffman graph Ho is represented by the standard lattice or an irreducible root lattice. Moreover, we show that if the special graph admits an integral representation, that is, the lattice spanned by it is not an exceptional root lattice, then the special graph S − (Ho) is isomorphic to one of the Dynkin graphs An, Dn, or extended Dynkin graphs Ãn or D̃n.
DOI : 10.26493/1855-3974.262.a9d
Keywords: Hoffman graph, line graph, graph eigenvalue, special graph, root system
@article{10_26493_1855_3974_262_a9d,
     author = {Hye Jin Jang and Jack Koolen and Akihiro Munemasa and Tetsuji Taniguchi},
     title = {On fat {Hoffman} graphs with smallest eigenvalue at least -3},
     journal = {Ars Mathematica Contemporanea},
     pages = {105--121},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     doi = {10.26493/1855-3974.262.a9d},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.262.a9d/}
}
TY  - JOUR
AU  - Hye Jin Jang
AU  - Jack Koolen
AU  - Akihiro Munemasa
AU  - Tetsuji Taniguchi
TI  - On fat Hoffman graphs with smallest eigenvalue at least -3
JO  - Ars Mathematica Contemporanea
PY  - 2014
SP  - 105
EP  - 121
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.262.a9d/
DO  - 10.26493/1855-3974.262.a9d
LA  - en
ID  - 10_26493_1855_3974_262_a9d
ER  - 
%0 Journal Article
%A Hye Jin Jang
%A Jack Koolen
%A Akihiro Munemasa
%A Tetsuji Taniguchi
%T On fat Hoffman graphs with smallest eigenvalue at least -3
%J Ars Mathematica Contemporanea
%D 2014
%P 105-121
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.262.a9d/
%R 10.26493/1855-3974.262.a9d
%G en
%F 10_26493_1855_3974_262_a9d
Hye Jin Jang; Jack Koolen; Akihiro Munemasa; Tetsuji Taniguchi. On fat Hoffman graphs with smallest eigenvalue at least -3. Ars Mathematica Contemporanea, Tome 7 (2014) no. 1, pp. 105-121. doi : 10.26493/1855-3974.262.a9d. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.262.a9d/

Cité par Sources :