Factorizing the Rado graph and infinite complete graphs
Ars Mathematica Contemporanea, Tome 24 (2024) no. 1, article no. 02, 19 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let ℱ = {Fα : α ∈ A} be a family of infinite graphs, together with Λ. The Factorization Problem FP(ℱ,Λ) asks whether ℱ can be realized as a factorization of Λ, namely, whether there is a factorization G = {Γα : α ∈ A} of Λ such that each Γα is a copy of Fα. We study this problem when Λ is either the Rado graph R or the complete graph Kℵ of infinite order ℵ. When ℱ is a countably infinite family, we show that FP(ℱ,R) is solvable if and only if each graph in ℱ has no finite dominating set. We also prove that FP(ℱ,Kℵ) admits a solution whenever the cardinality of ℱ coincides with the order and the domination numbers of its graphs. For countable complete graphs, we show some non existence results when the domination numbers of the graphs in ℱ are finite. More precisely, we show that there is no factorization of Kℕ into copies of a k-star (that is, the vertex disjoint union of k countable stars) when k = 1, 2, whereas it exists when k ≥ 4, leaving the problem open for k = 3. Finally, we determine sufficient conditions for the graphs of a decomposition to be arranged into resolution classes.
DOI : 10.26493/1855-3974.2616.4a9
Keywords: Factorization Problem, resolution problem, Rado graph, infinite graphs
@article{10_26493_1855_3974_2616_4a9,
     author = {Simone Costa and Tommaso Traetta},
     title = {Factorizing the {Rado} graph and infinite complete graphs},
     journal = {Ars Mathematica Contemporanea},
     eid = {02},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2024},
     doi = {10.26493/1855-3974.2616.4a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2616.4a9/}
}
TY  - JOUR
AU  - Simone Costa
AU  - Tommaso Traetta
TI  - Factorizing the Rado graph and infinite complete graphs
JO  - Ars Mathematica Contemporanea
PY  - 2024
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2616.4a9/
DO  - 10.26493/1855-3974.2616.4a9
LA  - en
ID  - 10_26493_1855_3974_2616_4a9
ER  - 
%0 Journal Article
%A Simone Costa
%A Tommaso Traetta
%T Factorizing the Rado graph and infinite complete graphs
%J Ars Mathematica Contemporanea
%D 2024
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2616.4a9/
%R 10.26493/1855-3974.2616.4a9
%G en
%F 10_26493_1855_3974_2616_4a9
Simone Costa; Tommaso Traetta. Factorizing the Rado graph and infinite complete graphs. Ars Mathematica Contemporanea, Tome 24 (2024) no. 1, article  no. 02, 19 p. doi : 10.26493/1855-3974.2616.4a9. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2616.4a9/

Cité par Sources :