Two-distance transitive normal Cayley graphs
Ars Mathematica Contemporanea, Tome 22 (2022) no. 2, article no. 02, 10 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

In this paper, we construct an infinite family of normal Cayley graphs, which are 2-distance-transitive but neither distance-transitive nor 2-arc-transitive. This answers a question proposed by Chen, Jin and Li in 2019.
DOI : 10.26493/1855-3974.2593.1b7
Keywords: Cayley graph, 2-distance-transitive graph, simple group
@article{10_26493_1855_3974_2593_1b7,
     author = {Jun-Jie Huang and Yan-Quan Feng and Jin-Xin Zhou},
     title = {Two-distance transitive normal {Cayley} graphs},
     journal = {Ars Mathematica Contemporanea},
     eid = {02},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     doi = {10.26493/1855-3974.2593.1b7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2593.1b7/}
}
TY  - JOUR
AU  - Jun-Jie Huang
AU  - Yan-Quan Feng
AU  - Jin-Xin Zhou
TI  - Two-distance transitive normal Cayley graphs
JO  - Ars Mathematica Contemporanea
PY  - 2022
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2593.1b7/
DO  - 10.26493/1855-3974.2593.1b7
LA  - en
ID  - 10_26493_1855_3974_2593_1b7
ER  - 
%0 Journal Article
%A Jun-Jie Huang
%A Yan-Quan Feng
%A Jin-Xin Zhou
%T Two-distance transitive normal Cayley graphs
%J Ars Mathematica Contemporanea
%D 2022
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2593.1b7/
%R 10.26493/1855-3974.2593.1b7
%G en
%F 10_26493_1855_3974_2593_1b7
Jun-Jie Huang; Yan-Quan Feng; Jin-Xin Zhou. Two-distance transitive normal Cayley graphs. Ars Mathematica Contemporanea, Tome 22 (2022) no. 2, article  no. 02, 10 p. doi : 10.26493/1855-3974.2593.1b7. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2593.1b7/

Cité par Sources :