The antiprism of an abstract polytope
Ars Mathematica Contemporanea, Tome 22 (2022) no. 2, article no. 08, 11 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Antiprisms of polygons are classical convex vertex-transitive polyhedra. In this paper, for any given (abstract) polytope, we define its antiprism. We then find the automorphism group of the antiprism of P in terms of the extended group of P (the groups of automorphisms and dualities) as well as some transitivity properties. We also give a relation between some products of abstract polytopes and their antiprisms.
DOI : 10.26493/1855-3974.2584.68d
Keywords: Antiprism, abstract polytopes
@article{10_26493_1855_3974_2584_68d,
     author = {Ian Gleason and Isabel Hubard},
     title = {The antiprism of an abstract polytope},
     journal = {Ars Mathematica Contemporanea},
     eid = {08},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     doi = {10.26493/1855-3974.2584.68d},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2584.68d/}
}
TY  - JOUR
AU  - Ian Gleason
AU  - Isabel Hubard
TI  - The antiprism of an abstract polytope
JO  - Ars Mathematica Contemporanea
PY  - 2022
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2584.68d/
DO  - 10.26493/1855-3974.2584.68d
LA  - en
ID  - 10_26493_1855_3974_2584_68d
ER  - 
%0 Journal Article
%A Ian Gleason
%A Isabel Hubard
%T The antiprism of an abstract polytope
%J Ars Mathematica Contemporanea
%D 2022
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2584.68d/
%R 10.26493/1855-3974.2584.68d
%G en
%F 10_26493_1855_3974_2584_68d
Ian Gleason; Isabel Hubard. The antiprism of an abstract polytope. Ars Mathematica Contemporanea, Tome 22 (2022) no. 2, article  no. 08, 11 p. doi : 10.26493/1855-3974.2584.68d. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2584.68d/

Cité par Sources :