Product irregularity strength of certain graphs
Ars Mathematica Contemporanea, Tome 7 (2014) no. 1, pp. 23-29.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Consider a simple graph G with no isolated edges and at most one isolated vertex. A labeling w: E(G) → {1, 2, …, m} is called product - irregular, if all product degrees pdG(v) = ∏ e ∋ vw(e) are distinct. The goal is to obtain a product - irregular labeling that minimizes the maximal label. This minimal value is called the product irregularity strength and denoted ps(G). We give the exact values of ps(G) for several families of graphs, as complete bipartite graphs Km, n, where 2 ≤ m ≤ n ≤ (m + 2) choose 2, some families of forests, including complete d-ary trees, and other graphs with δ(G) = 1.
DOI : 10.26493/1855-3974.258.2a0
Keywords: Product-irregular labeling, product irregularity strength, tree
@article{10_26493_1855_3974_258_2a0,
     author = {Marcin Anholcer},
     title = {Product irregularity strength of certain graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {23--29},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     doi = {10.26493/1855-3974.258.2a0},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.258.2a0/}
}
TY  - JOUR
AU  - Marcin Anholcer
TI  - Product irregularity strength of certain graphs
JO  - Ars Mathematica Contemporanea
PY  - 2014
SP  - 23
EP  - 29
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.258.2a0/
DO  - 10.26493/1855-3974.258.2a0
LA  - en
ID  - 10_26493_1855_3974_258_2a0
ER  - 
%0 Journal Article
%A Marcin Anholcer
%T Product irregularity strength of certain graphs
%J Ars Mathematica Contemporanea
%D 2014
%P 23-29
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.258.2a0/
%R 10.26493/1855-3974.258.2a0
%G en
%F 10_26493_1855_3974_258_2a0
Marcin Anholcer. Product irregularity strength of certain graphs. Ars Mathematica Contemporanea, Tome 7 (2014) no. 1, pp. 23-29. doi : 10.26493/1855-3974.258.2a0. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.258.2a0/

Cité par Sources :