Quasi m-Cayley circulants
Ars Mathematica Contemporanea, Tome 6 (2013) no. 1, pp. 147-154.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A graph Γ is called a quasi m-Cayley graph on a group G if there exists a vertex ∞ ∈ V(Γ ) and a subgroup G of the vertex stabilizer Aut(Γ )∞ of the vertex ∞ in the full automorphism group Aut(Γ ) of Γ , such that G acts semiregularly on V(Γ ) ∖ {∞} with m orbits. If the vertex ∞ is adjacent to only one orbit of G on V(Γ ) ∖ {∞}, then Γ is called a strongly quasi m-Cayley graph on G. In this paper complete classifications of quasi 2-Cayley, quasi 3-Cayley and strongly quasi 4-Cayley connected circulants are given.
DOI : 10.26493/1855-3974.256.e06
Keywords: Arc-transitive, circulant, quasi m-Cayley graph.
@article{10_26493_1855_3974_256_e06,
     author = {Ademir Hujdurovi\'c},
     title = {Quasi {m-Cayley} circulants},
     journal = {Ars Mathematica Contemporanea},
     pages = {147--154},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     doi = {10.26493/1855-3974.256.e06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.256.e06/}
}
TY  - JOUR
AU  - Ademir Hujdurović
TI  - Quasi m-Cayley circulants
JO  - Ars Mathematica Contemporanea
PY  - 2013
SP  - 147
EP  - 154
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.256.e06/
DO  - 10.26493/1855-3974.256.e06
LA  - en
ID  - 10_26493_1855_3974_256_e06
ER  - 
%0 Journal Article
%A Ademir Hujdurović
%T Quasi m-Cayley circulants
%J Ars Mathematica Contemporanea
%D 2013
%P 147-154
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.256.e06/
%R 10.26493/1855-3974.256.e06
%G en
%F 10_26493_1855_3974_256_e06
Ademir Hujdurović. Quasi m-Cayley circulants. Ars Mathematica Contemporanea, Tome 6 (2013) no. 1, pp. 147-154. doi : 10.26493/1855-3974.256.e06. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.256.e06/

Cité par Sources :