Configured polytopes and extremal configurations
Ars Mathematica Contemporanea, Tome 22 (2022) no. 4, article no. 08, 12 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We examine a class of involutory self-dual convex polytopes with a specified sets of diameters, compare their vertex sets to extremal Lenz configurations, and present some of their realizations.
DOI : 10.26493/1855-3974.2559.e4f
Keywords: Involutory self-dual polytopes, configured polytopes, Lenz configurations, extremal configurations
@article{10_26493_1855_3974_2559_e4f,
     author = {Tibor Bisztriczky and Gyivan Lopez-Campos and Deborah Oliveros},
     title = {Configured polytopes and extremal configurations},
     journal = {Ars Mathematica Contemporanea},
     eid = {08},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2022},
     doi = {10.26493/1855-3974.2559.e4f},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2559.e4f/}
}
TY  - JOUR
AU  - Tibor Bisztriczky
AU  - Gyivan Lopez-Campos
AU  - Deborah Oliveros
TI  - Configured polytopes and extremal configurations
JO  - Ars Mathematica Contemporanea
PY  - 2022
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2559.e4f/
DO  - 10.26493/1855-3974.2559.e4f
LA  - en
ID  - 10_26493_1855_3974_2559_e4f
ER  - 
%0 Journal Article
%A Tibor Bisztriczky
%A Gyivan Lopez-Campos
%A Deborah Oliveros
%T Configured polytopes and extremal configurations
%J Ars Mathematica Contemporanea
%D 2022
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2559.e4f/
%R 10.26493/1855-3974.2559.e4f
%G en
%F 10_26493_1855_3974_2559_e4f
Tibor Bisztriczky; Gyivan Lopez-Campos; Deborah Oliveros. Configured polytopes and extremal configurations. Ars Mathematica Contemporanea, Tome 22 (2022) no. 4, article  no. 08, 12 p. doi : 10.26493/1855-3974.2559.e4f. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2559.e4f/

Cité par Sources :