Complexity of circulant graphs with non-fixed jumps, its arithmetic properties and asymptotics
Ars Mathematica Contemporanea, Tome 23 (2023) no. 1, article no. 08, 16 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

In the present paper, we investigate a family of circulant graphs with non-fixed jumpsGn= Cβn(s1, ... , sk, α1n, ... , αln), 1 ≤ s1 ... sk≤ [βn/2], 1 ≤ α1 ... αl ≤ [β/2]. Here n is an arbitrary large natural number and integers s1, ... , sk, α1, ... , αl are supposed to be fixed.First, we present an explicit formula for the number of spanning trees in the graph Gn. This formula is a product of βsk-1 factors, each given by the n-th Chebyshev polynomial of the first kind evaluated at the roots of some prescribed polynomial of degree sk. Next, we provide some arithmetic properties of the complexity function. We show that the number of spanning trees in Gn can be represented in the form τ(n) = p n a(n)2, where a(n) is an integer sequence and p is a prescribed natural number depending of parity of β and n. Finally, we find an asymptotic formula for τ(n) through the Mahler measure of the associated Laurent polynomials differing by a constant from 2k - ∑i = 1k(zsi+z−si).
DOI : 10.26493/1855-3974.2530.e7c
Keywords: Spanning tree, circulant graph, Laplacian matrix, Chebyshev polynomial, Mahler measure
@article{10_26493_1855_3974_2530_e7c,
     author = {Alexander Mednykh and Ilya Mednykh},
     title = {Complexity of circulant graphs with non-fixed jumps, its arithmetic properties and asymptotics},
     journal = {Ars Mathematica Contemporanea},
     eid = {08},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2023},
     doi = {10.26493/1855-3974.2530.e7c},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2530.e7c/}
}
TY  - JOUR
AU  - Alexander Mednykh
AU  - Ilya Mednykh
TI  - Complexity of circulant graphs with non-fixed jumps, its arithmetic properties and asymptotics
JO  - Ars Mathematica Contemporanea
PY  - 2023
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2530.e7c/
DO  - 10.26493/1855-3974.2530.e7c
LA  - en
ID  - 10_26493_1855_3974_2530_e7c
ER  - 
%0 Journal Article
%A Alexander Mednykh
%A Ilya Mednykh
%T Complexity of circulant graphs with non-fixed jumps, its arithmetic properties and asymptotics
%J Ars Mathematica Contemporanea
%D 2023
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2530.e7c/
%R 10.26493/1855-3974.2530.e7c
%G en
%F 10_26493_1855_3974_2530_e7c
Alexander Mednykh; Ilya Mednykh. Complexity of circulant graphs with non-fixed jumps, its arithmetic properties and asymptotics. Ars Mathematica Contemporanea, Tome 23 (2023) no. 1, article  no. 08, 16 p. doi : 10.26493/1855-3974.2530.e7c. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2530.e7c/

Cité par Sources :