Nonorientable regular maps over linear fractional groups
Ars Mathematica Contemporanea, Tome 6 (2013) no. 1, pp. 25-35.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

It is well known that for any given hyperbolic pair (k, m) there exist infinitely many regular maps of valence k and face length m on an orientable surface, with automorphism group isomorphic to a linear fractional group. A nonorientable analogue of this result was known to be true for all pairs (k, m) as above with at least one even entry. In this paper we establish the existence of such regular maps on nonorientable surfaces for all hyperbolic pairs.
DOI : 10.26493/1855-3974.251.044
Keywords: Regular map, linear fractional group.
@article{10_26493_1855_3974_251_044,
     author = {Gareth A. Jones and Martin Ma\v{c}aj and Jozef \v{S}ir\'a\v{n}},
     title = {Nonorientable regular maps over linear fractional groups},
     journal = {Ars Mathematica Contemporanea},
     pages = {25--35},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     doi = {10.26493/1855-3974.251.044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.251.044/}
}
TY  - JOUR
AU  - Gareth A. Jones
AU  - Martin Mačaj
AU  - Jozef Širáň
TI  - Nonorientable regular maps over linear fractional groups
JO  - Ars Mathematica Contemporanea
PY  - 2013
SP  - 25
EP  - 35
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.251.044/
DO  - 10.26493/1855-3974.251.044
LA  - en
ID  - 10_26493_1855_3974_251_044
ER  - 
%0 Journal Article
%A Gareth A. Jones
%A Martin Mačaj
%A Jozef Širáň
%T Nonorientable regular maps over linear fractional groups
%J Ars Mathematica Contemporanea
%D 2013
%P 25-35
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.251.044/
%R 10.26493/1855-3974.251.044
%G en
%F 10_26493_1855_3974_251_044
Gareth A. Jones; Martin Mačaj; Jozef Širáň. Nonorientable regular maps over linear fractional groups. Ars Mathematica Contemporanea, Tome 6 (2013) no. 1, pp. 25-35. doi : 10.26493/1855-3974.251.044. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.251.044/

Cité par Sources :