Line graphs and geodesic transitivity
Ars Mathematica Contemporanea, Tome 6 (2013) no. 1, pp. 13-20.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

For a graph Γ, a positive integer s and a subgroup G ≤ Aut(Γ), we prove that G is transitive on the set of s-arcs of Γ if and only if Γ has girth at least 2(s − 1) and G is transitive on the set of (s − 1)-geodesics of its line graph. As applications, we first classify 2-geodesic transitive graphs of valency 4 and girth 3, and determine which of them are geodesic transitive. Secondly we prove that the only non-complete locally cyclic 2-geodesic transitive graphs are the octahedron and the icosahedron.
DOI : 10.26493/1855-3974.248.aae
Keywords: Line graphs, s-geodesic transitive graphs, s-arc transitive graphs.
@article{10_26493_1855_3974_248_aae,
     author = {Alice Devillers and Wei Jin and Cai Heng Li and Cheryl E. Praeger},
     title = {Line graphs and geodesic transitivity},
     journal = {Ars Mathematica Contemporanea},
     pages = {13--20},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     doi = {10.26493/1855-3974.248.aae},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.248.aae/}
}
TY  - JOUR
AU  - Alice Devillers
AU  - Wei Jin
AU  - Cai Heng Li
AU  - Cheryl E. Praeger
TI  - Line graphs and geodesic transitivity
JO  - Ars Mathematica Contemporanea
PY  - 2013
SP  - 13
EP  - 20
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.248.aae/
DO  - 10.26493/1855-3974.248.aae
LA  - en
ID  - 10_26493_1855_3974_248_aae
ER  - 
%0 Journal Article
%A Alice Devillers
%A Wei Jin
%A Cai Heng Li
%A Cheryl E. Praeger
%T Line graphs and geodesic transitivity
%J Ars Mathematica Contemporanea
%D 2013
%P 13-20
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.248.aae/
%R 10.26493/1855-3974.248.aae
%G en
%F 10_26493_1855_3974_248_aae
Alice Devillers; Wei Jin; Cai Heng Li; Cheryl E. Praeger. Line graphs and geodesic transitivity. Ars Mathematica Contemporanea, Tome 6 (2013) no. 1, pp. 13-20. doi : 10.26493/1855-3974.248.aae. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.248.aae/

Cité par Sources :