Efficient proper embedding of a daisy cube
Ars Mathematica Contemporanea, Tome 21 (2021) no. 2, article no. 07, 12 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

For a set X of binary words of length h the daisy cube Qh(X) is defined as the subgraph of the hypercube Qh induced by the set of all vertices on shortest paths that connect vertices of X with the vertex 0h. A vertex in the intersection of all of these paths is a minimal vertex of a daisy cube. A graph G isomorphic to a daisy cube admits several isometric embeddings into a hypercube. We show that an isometric embedding is proper if and only if the label 0h is assigned to a minimal vertex of G. This result allows us to devise an algorithm which finds a proper embedding of a graph isomorphic to a daisy cube into a hypercube in linear time.
DOI : 10.26493/1855-3974.2454.892
Keywords: Daisy cube, partial cube, isometric embedding, proper embedding
@article{10_26493_1855_3974_2454_892,
     author = {Aleksander Vesel},
     title = {Efficient proper embedding of a daisy cube},
     journal = {Ars Mathematica Contemporanea},
     eid = {07},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     doi = {10.26493/1855-3974.2454.892},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2454.892/}
}
TY  - JOUR
AU  - Aleksander Vesel
TI  - Efficient proper embedding of a daisy cube
JO  - Ars Mathematica Contemporanea
PY  - 2021
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2454.892/
DO  - 10.26493/1855-3974.2454.892
LA  - en
ID  - 10_26493_1855_3974_2454_892
ER  - 
%0 Journal Article
%A Aleksander Vesel
%T Efficient proper embedding of a daisy cube
%J Ars Mathematica Contemporanea
%D 2021
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2454.892/
%R 10.26493/1855-3974.2454.892
%G en
%F 10_26493_1855_3974_2454_892
Aleksander Vesel. Efficient proper embedding of a daisy cube. Ars Mathematica Contemporanea, Tome 21 (2021) no. 2, article  no. 07, 12 p. doi : 10.26493/1855-3974.2454.892. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2454.892/

Cité par Sources :