On D. G. Higman's note on regular 3-graphs
Ars Mathematica Contemporanea, Tome 6 (2013) no. 1, pp. 99-115.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We introduce the notion of a t-graph and prove that regular 3-graphs are equivalent to cyclic antipodal 3-fold covers of a complete graph. This generalizes the equivalence of regular two-graphs and Taylor graphs. As a consequence, an equivalence between cyclic antipodal distance regular graphs of diameter 3 and certain rank 6 commutative association schemes is proved. New examples of regular 3-graphs are presented.
DOI : 10.26493/1855-3974.243.260
Keywords: Antipodal graph, association scheme, distance regular graph of diameter 3, Godsil-Hensel matrix, group ring, Taylor graph, two-graph.
@article{10_26493_1855_3974_243_260,
     author = {Daniel Kalmanovich},
     title = {On {D.} {G.} {Higman's} note on regular 3-graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {99--115},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     doi = {10.26493/1855-3974.243.260},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.243.260/}
}
TY  - JOUR
AU  - Daniel Kalmanovich
TI  - On D. G. Higman's note on regular 3-graphs
JO  - Ars Mathematica Contemporanea
PY  - 2013
SP  - 99
EP  - 115
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.243.260/
DO  - 10.26493/1855-3974.243.260
LA  - en
ID  - 10_26493_1855_3974_243_260
ER  - 
%0 Journal Article
%A Daniel Kalmanovich
%T On D. G. Higman's note on regular 3-graphs
%J Ars Mathematica Contemporanea
%D 2013
%P 99-115
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.243.260/
%R 10.26493/1855-3974.243.260
%G en
%F 10_26493_1855_3974_243_260
Daniel Kalmanovich. On D. G. Higman's note on regular 3-graphs. Ars Mathematica Contemporanea, Tome 6 (2013) no. 1, pp. 99-115. doi : 10.26493/1855-3974.243.260. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.243.260/

Cité par Sources :