The polynomial method for list-colouring extendability of outerplanar graphs
Ars Mathematica Contemporanea, Tome 21 (2021) no. 2, article no. 08, 17 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We restate theorems of Hutchinson [5] on list-colouring extendability for outerplanar graphs in terms of non-vanishing monomials in a graph polynomial, which yields an Alon-Tarsi equivalent for her work. This allows to simplify her proofs as well as obtain more general results.
DOI : 10.26493/1855-3974.2398.7d5
Keywords: Outerplanar graph, list colouring, paintability, Alon-Tarsi number
@article{10_26493_1855_3974_2398_7d5,
     author = {Przemys{\l}aw Gordinowicz and Pawe{\l} Twardowski},
     title = {The polynomial method for list-colouring extendability of outerplanar graphs},
     journal = {Ars Mathematica Contemporanea},
     eid = {08},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     doi = {10.26493/1855-3974.2398.7d5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2398.7d5/}
}
TY  - JOUR
AU  - Przemysław Gordinowicz
AU  - Paweł Twardowski
TI  - The polynomial method for list-colouring extendability of outerplanar graphs
JO  - Ars Mathematica Contemporanea
PY  - 2021
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2398.7d5/
DO  - 10.26493/1855-3974.2398.7d5
LA  - en
ID  - 10_26493_1855_3974_2398_7d5
ER  - 
%0 Journal Article
%A Przemysław Gordinowicz
%A Paweł Twardowski
%T The polynomial method for list-colouring extendability of outerplanar graphs
%J Ars Mathematica Contemporanea
%D 2021
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2398.7d5/
%R 10.26493/1855-3974.2398.7d5
%G en
%F 10_26493_1855_3974_2398_7d5
Przemysław Gordinowicz; Paweł Twardowski. The polynomial method for list-colouring extendability of outerplanar graphs. Ars Mathematica Contemporanea, Tome 21 (2021) no. 2, article  no. 08, 17 p. doi : 10.26493/1855-3974.2398.7d5. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2398.7d5/

Cité par Sources :