On generalized strong complete mappings and mutually orthogonal Latin squares
Ars Mathematica Contemporanea, Tome 21 (2021) no. 2, article no. 09, 7 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We present an application of generalized strong complete mappings to construction of a family of mutually orthogonal Latin squares. We also determine a cycle structure of such mapping which form a complete family of MOLS. Many constructions of generalized strong complete mappings over an extension of finite field are provided.
DOI : 10.26493/1855-3974.2388.928
Keywords: Strong complete mapping, group, finite field, mutually orthogonal Latin squares (MOLS)
@article{10_26493_1855_3974_2388_928,
     author = {Amela Muratovi\'c-Ribi\'c},
     title = {On generalized strong complete mappings and mutually orthogonal {Latin} squares},
     journal = {Ars Mathematica Contemporanea},
     eid = {09},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     doi = {10.26493/1855-3974.2388.928},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2388.928/}
}
TY  - JOUR
AU  - Amela Muratović-Ribić
TI  - On generalized strong complete mappings and mutually orthogonal Latin squares
JO  - Ars Mathematica Contemporanea
PY  - 2021
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2388.928/
DO  - 10.26493/1855-3974.2388.928
LA  - en
ID  - 10_26493_1855_3974_2388_928
ER  - 
%0 Journal Article
%A Amela Muratović-Ribić
%T On generalized strong complete mappings and mutually orthogonal Latin squares
%J Ars Mathematica Contemporanea
%D 2021
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2388.928/
%R 10.26493/1855-3974.2388.928
%G en
%F 10_26493_1855_3974_2388_928
Amela Muratović-Ribić. On generalized strong complete mappings and mutually orthogonal Latin squares. Ars Mathematica Contemporanea, Tome 21 (2021) no. 2, article  no. 09, 7 p. doi : 10.26493/1855-3974.2388.928. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2388.928/

Cité par Sources :