The Cayley isomorphism property for the group C_2^5 × C_p
Ars Mathematica Contemporanea, Tome 19 (2020) no. 2, pp. 277-295.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A finite group G is called a DCI-group if two Cayley digraphs over G are isomorphic if and only if their connection sets are conjugate by a group automorphism. We prove that the group C25 × Cp, where p is a prime, is a DCI-group if and only if p ≠ 2. Together with the previously obtained results, this implies that a group G of order 32p, where p is a prime, is a DCI-group if and only if p ≠ 2 and G ≅ C25 × Cp.
DOI : 10.26493/1855-3974.2348.f42
Keywords: Isomorphisms, DCI-groups, Schur rings
@article{10_26493_1855_3974_2348_f42,
     author = {Grigory Ryabov},
     title = {The {Cayley} isomorphism property for the group {C_2^5\hspace{0.25em}{\texttimes}\hspace{0.25em}C_p}},
     journal = {Ars Mathematica Contemporanea},
     pages = {277--295},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2020},
     doi = {10.26493/1855-3974.2348.f42},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2348.f42/}
}
TY  - JOUR
AU  - Grigory Ryabov
TI  - The Cayley isomorphism property for the group C_2^5 × C_p
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 277
EP  - 295
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2348.f42/
DO  - 10.26493/1855-3974.2348.f42
LA  - en
ID  - 10_26493_1855_3974_2348_f42
ER  - 
%0 Journal Article
%A Grigory Ryabov
%T The Cayley isomorphism property for the group C_2^5 × C_p
%J Ars Mathematica Contemporanea
%D 2020
%P 277-295
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2348.f42/
%R 10.26493/1855-3974.2348.f42
%G en
%F 10_26493_1855_3974_2348_f42
Grigory Ryabov. The Cayley isomorphism property for the group C_2^5 × C_p. Ars Mathematica Contemporanea, Tome 19 (2020) no. 2, pp. 277-295. doi : 10.26493/1855-3974.2348.f42. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2348.f42/

Cité par Sources :