A simple and elementary proof of Whitney's unique embedding theorem
Ars Mathematica Contemporanea, Tome 20 (2021) no. 2, pp. 195-197.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

In this note we give a short and elementary proof of a more general version of Whitney’s theorem that 3-connected planar graphs have a unique embedding in the plane. A consequence of the theorem is also that cubic plane graphs cannot be embedded in a higher genus with a simple dual. The aim of this paper is to promote a simple and elementary proof, which is especially well suited for lectures presenting Whitney’s theorem.
DOI : 10.26493/1855-3974.2334.331
Keywords: Polyhedra, graph, embedding
@article{10_26493_1855_3974_2334_331,
     author = {Gunnar Brinkmann},
     title = {A simple and elementary proof of {Whitney's} unique embedding theorem},
     journal = {Ars Mathematica Contemporanea},
     pages = {195--197},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2021},
     doi = {10.26493/1855-3974.2334.331},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2334.331/}
}
TY  - JOUR
AU  - Gunnar Brinkmann
TI  - A simple and elementary proof of Whitney's unique embedding theorem
JO  - Ars Mathematica Contemporanea
PY  - 2021
SP  - 195
EP  - 197
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2334.331/
DO  - 10.26493/1855-3974.2334.331
LA  - en
ID  - 10_26493_1855_3974_2334_331
ER  - 
%0 Journal Article
%A Gunnar Brinkmann
%T A simple and elementary proof of Whitney's unique embedding theorem
%J Ars Mathematica Contemporanea
%D 2021
%P 195-197
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2334.331/
%R 10.26493/1855-3974.2334.331
%G en
%F 10_26493_1855_3974_2334_331
Gunnar Brinkmann. A simple and elementary proof of Whitney's unique embedding theorem. Ars Mathematica Contemporanea, Tome 20 (2021) no. 2, pp. 195-197. doi : 10.26493/1855-3974.2334.331. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2334.331/

Cité par Sources :