Closed formulas for the total Roman domination number of lexicographic product graphs
Ars Mathematica Contemporanea, Tome 20 (2021) no. 2, pp. 233-241.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let G be a graph with no isolated vertex and f: V(G) → {0, 1, 2} a function. Let Vi = {x ∈ V(G) : f(x) = i} for every i ∈ {0, 1, 2}. We say that f is a total Roman dominating function on G if every vertex in V0 is adjacent to at least one vertex in V2 and the subgraph induced by V1 ∪ V2 has no isolated vertex. The weight of f is ω(f) = ∑v ∈ V(G)f(v). The minimum weight among all total Roman dominating functions on G is the total Roman domination number of G, denoted by γtR(G). It is known that the general problem of computing γtR(G) is NP-hard. In this paper, we show that if G is a graph with no isolated vertex and H is a nontrivial graph, then the total Roman domination number of the lexicographic product graph G ∘ H is given by γtR(G ∘ H) = 2γt(G) if γ(H) ≥ 2, and γtR(G ∘ H) = ξ(G) if γ(H) = 1, where γ(H) is the domination number of H, γt(G) is the total domination number of G and ξ(G) is a domination parameter defined on G.
DOI : 10.26493/1855-3974.2284.aeb
Keywords: Total Roman domination, total domination, lexicographic product graph
@article{10_26493_1855_3974_2284_aeb,
     author = {Abel Cabrera Mart{\'\i}nez and Juan Alberto Rodr{\'\i}guez-Vel\'azquez},
     title = {Closed formulas for the total {Roman} domination number of lexicographic product graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {233--241},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2021},
     doi = {10.26493/1855-3974.2284.aeb},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2284.aeb/}
}
TY  - JOUR
AU  - Abel Cabrera Martínez
AU  - Juan Alberto Rodríguez-Velázquez
TI  - Closed formulas for the total Roman domination number of lexicographic product graphs
JO  - Ars Mathematica Contemporanea
PY  - 2021
SP  - 233
EP  - 241
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2284.aeb/
DO  - 10.26493/1855-3974.2284.aeb
LA  - en
ID  - 10_26493_1855_3974_2284_aeb
ER  - 
%0 Journal Article
%A Abel Cabrera Martínez
%A Juan Alberto Rodríguez-Velázquez
%T Closed formulas for the total Roman domination number of lexicographic product graphs
%J Ars Mathematica Contemporanea
%D 2021
%P 233-241
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2284.aeb/
%R 10.26493/1855-3974.2284.aeb
%G en
%F 10_26493_1855_3974_2284_aeb
Abel Cabrera Martínez; Juan Alberto Rodríguez-Velázquez. Closed formulas for the total Roman domination number of lexicographic product graphs. Ars Mathematica Contemporanea, Tome 20 (2021) no. 2, pp. 233-241. doi : 10.26493/1855-3974.2284.aeb. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2284.aeb/

Cité par Sources :