Maximal order group actions on Riemann surfaces
Ars Mathematica Contemporanea, Tome 22 (2022) no. 1, article no. 09, 13 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A natural problem is to determine, for each value of the integer g ≥ 2, the largest order of a group that acts on a Riemann surface of genus g. Let N(g) (respectively M(g)) be the largest order of a group of automorphisms of a Riemann surface of genus g ≥ 2 preserving the orientation (respectively possibly reversing the orientation) of the surface.The basic inequalities comparing N(g) and M(g) are N(g) ≤ M(g) ≤ 2N(g). There are well-known families of extended Hurwitz groups that provide an infinite number of integers g satisfying M(g) = 2N(g). It is also easy to see that there are solvable groups which provide an infinite number of such examples.We prove that, perhaps surprisingly, there are an infinite number of integers g such that N(g) = M(g). Specifically, if p is a prime satisfying p ≡ 1 (mod  6) and g = 3p + 1 or g = 2p + 1, there is a group of order 24(g − 1) that acts on a surface of genus g preserving the orientation of the surface. For all such values of g larger than a fixed constant, there are no groups with order larger than 24(g − 1) that act on a surface of genus g.
DOI : 10.26493/1855-3974.2257.6de
Keywords: Riemann surface, genus, group action, NEC group, strong symmetric genus
@article{10_26493_1855_3974_2257_6de,
     author = {Jay Zimmerman and Coy L. May},
     title = {Maximal order group actions on {Riemann} surfaces},
     journal = {Ars Mathematica Contemporanea},
     eid = {09},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2022},
     doi = {10.26493/1855-3974.2257.6de},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2257.6de/}
}
TY  - JOUR
AU  - Jay Zimmerman
AU  - Coy L. May
TI  - Maximal order group actions on Riemann surfaces
JO  - Ars Mathematica Contemporanea
PY  - 2022
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2257.6de/
DO  - 10.26493/1855-3974.2257.6de
LA  - en
ID  - 10_26493_1855_3974_2257_6de
ER  - 
%0 Journal Article
%A Jay Zimmerman
%A Coy L. May
%T Maximal order group actions on Riemann surfaces
%J Ars Mathematica Contemporanea
%D 2022
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2257.6de/
%R 10.26493/1855-3974.2257.6de
%G en
%F 10_26493_1855_3974_2257_6de
Jay Zimmerman; Coy L. May. Maximal order group actions on Riemann surfaces. Ars Mathematica Contemporanea, Tome 22 (2022) no. 1, article  no. 09, 13 p. doi : 10.26493/1855-3974.2257.6de. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2257.6de/

Cité par Sources :