A double Sylvester determinant
Ars Mathematica Contemporanea, Tome 20 (2021) no. 2, pp. 261-274.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Given two (n+1) × (n+1)-matrices A and B over a commutative ring, and some k ∈ {0, 1, …, n}, we consider the (n choose k) × (n choose k)-matrix W whose entries are (k+1) × (k+1)-minors of A multiplied by corresponding (k+1) × (k+1)-minors of B. Here we require the minors to use the last row and the last column (which is why we obtain an (n choose k) × (n choose k)-matrix, not a (n + 1 choose k + 1) × (n + 1 choose k + 1)-matrix). We prove that the determinant det W is a multiple of det A if the (n+1, n+1)-th entry of B is 0. Furthermore, if the (n+1, n+1)-th entries of both A and B are 0, then det W is a multiple of (detA)(detB). This extends a previous result of Olver and the author.
DOI : 10.26493/1855-3974.2248.d3f
Keywords: Determinant, compound matrix, Sylvester's determinant, polynomials
@article{10_26493_1855_3974_2248_d3f,
     author = {Darij Grinberg},
     title = {A double {Sylvester} determinant},
     journal = {Ars Mathematica Contemporanea},
     pages = {261--274},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2021},
     doi = {10.26493/1855-3974.2248.d3f},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2248.d3f/}
}
TY  - JOUR
AU  - Darij Grinberg
TI  - A double Sylvester determinant
JO  - Ars Mathematica Contemporanea
PY  - 2021
SP  - 261
EP  - 274
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2248.d3f/
DO  - 10.26493/1855-3974.2248.d3f
LA  - en
ID  - 10_26493_1855_3974_2248_d3f
ER  - 
%0 Journal Article
%A Darij Grinberg
%T A double Sylvester determinant
%J Ars Mathematica Contemporanea
%D 2021
%P 261-274
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2248.d3f/
%R 10.26493/1855-3974.2248.d3f
%G en
%F 10_26493_1855_3974_2248_d3f
Darij Grinberg. A double Sylvester determinant. Ars Mathematica Contemporanea, Tome 20 (2021) no. 2, pp. 261-274. doi : 10.26493/1855-3974.2248.d3f. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2248.d3f/

Cité par Sources :