On a certain class of 1-thin distance-regular graphs
Ars Mathematica Contemporanea, Tome 18 (2020) no. 2, pp. 187-210.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let Γ denote a non-bipartite distance-regular graph with vertex set X, diameter D ≥ 3, and valency k ≥ 3. Fix x ∈ X and let T = T(x) denote the Terwilliger algebra of Γ with respect to x. For any z ∈ X and for 0 ≤ i ≤ D, let Γi(z) = {w ∈ X : ∂(z, w) = i}. For y ∈ Γ1(x), abbreviate Dji = Dji(x, y) = Γi(x) ∩ Γj(y) (0 ≤ i, j ≤ D). For 1 ≤ i ≤ D and for a given y, we define maps Hi: Dii → ℤ and Vi: Di − 1i ∪ Dii − 1 → ℤ as follows: Hi(z) = |Γ1(z) ∩ Di − 1i − 1|,  Vi(z) = |Γ1(z) ∩ Di − 1i − 1|. We assume that for every y ∈ Γ1(x) and for 2 ≤ i ≤ D, the corresponding maps Hi and Vi are constant, and that these constants do not depend on the choice of y. We further assume that the constant value of Hi is nonzero for 2 ≤ i ≤ D. We show that every irreducible T-module of endpoint 1 is thin. Furthermore, we show Γ has exactly three irreducible T-modules of endpoint 1, up to isomorphism, if and only if three certain combinatorial conditions hold. As examples, we show that the Johnson graphs J(n, m) where n ≥ 7,  3 ≤ m  n/2 satisfy all of these conditions.
DOI : 10.26493/1855-3974.2193.0b0
Keywords: Distance-regular graph, Terwilliger algebra, subconstituent algebra
@article{10_26493_1855_3974_2193_0b0,
     author = {Mark S. MacLean and \v{S}tefko Miklavi\v{c}},
     title = {On a certain class of 1-thin distance-regular graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {187--210},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2020},
     doi = {10.26493/1855-3974.2193.0b0},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2193.0b0/}
}
TY  - JOUR
AU  - Mark S. MacLean
AU  - Štefko Miklavič
TI  - On a certain class of 1-thin distance-regular graphs
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 187
EP  - 210
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2193.0b0/
DO  - 10.26493/1855-3974.2193.0b0
LA  - en
ID  - 10_26493_1855_3974_2193_0b0
ER  - 
%0 Journal Article
%A Mark S. MacLean
%A Štefko Miklavič
%T On a certain class of 1-thin distance-regular graphs
%J Ars Mathematica Contemporanea
%D 2020
%P 187-210
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2193.0b0/
%R 10.26493/1855-3974.2193.0b0
%G en
%F 10_26493_1855_3974_2193_0b0
Mark S. MacLean; Štefko Miklavič. On a certain class of 1-thin distance-regular graphs. Ars Mathematica Contemporanea, Tome 18 (2020) no. 2, pp. 187-210. doi : 10.26493/1855-3974.2193.0b0. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2193.0b0/

Cité par Sources :