Nordhaus-Gaddum type inequalities for the distinguishing index
Ars Mathematica Contemporanea, Tome 20 (2021) no. 2, pp. 223-231.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The distinguishing index of a graph G, denoted by D′(G), is the least number of colours in an edge colouring of G not preserved by any nontrivial automorphism. This invariant is defined for any graph without K2 as a connected component and without two isolated vertices, and such a graph is called admissible. We prove the Nordhaus-Gaddum type relation:2 ≤ D′(G) + D′(Ḡ) ≤ Δ(G) + 2for every admissible connected graph G of order |G| ≥ 7 such that Ḡ is also admissible.
DOI : 10.26493/1855-3974.2173.71a
Keywords: Symmetry breaking in graphs, distinguishing index, Nordhaus-Gaddum type bounds
@article{10_26493_1855_3974_2173_71a,
     author = {Monika Pil\'sniak},
     title = {Nordhaus-Gaddum type inequalities for the distinguishing index},
     journal = {Ars Mathematica Contemporanea},
     pages = {223--231},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2021},
     doi = {10.26493/1855-3974.2173.71a},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2173.71a/}
}
TY  - JOUR
AU  - Monika Pilśniak
TI  - Nordhaus-Gaddum type inequalities for the distinguishing index
JO  - Ars Mathematica Contemporanea
PY  - 2021
SP  - 223
EP  - 231
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2173.71a/
DO  - 10.26493/1855-3974.2173.71a
LA  - en
ID  - 10_26493_1855_3974_2173_71a
ER  - 
%0 Journal Article
%A Monika Pilśniak
%T Nordhaus-Gaddum type inequalities for the distinguishing index
%J Ars Mathematica Contemporanea
%D 2021
%P 223-231
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2173.71a/
%R 10.26493/1855-3974.2173.71a
%G en
%F 10_26493_1855_3974_2173_71a
Monika Pilśniak. Nordhaus-Gaddum type inequalities for the distinguishing index. Ars Mathematica Contemporanea, Tome 20 (2021) no. 2, pp. 223-231. doi : 10.26493/1855-3974.2173.71a. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2173.71a/

Cité par Sources :