Graphical Frobenius representations of non-abelian groups
Ars Mathematica Contemporanea, Tome 20 (2021) no. 1, pp. 89-102.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A group G has a Frobenius graphical representation (GFR) if there is a simple graph Γ whose full automorphism group is isomorphic to G acting on the vertices as a Frobenius group. In particular, any group G with a GFR is a Frobenius group and Γ is a Cayley graph. By very recent results of Spiga, there exists a function f such that if G is a finite Frobenius group with complement H and |G| > f(|H|) then G admits a GFR. This paper provides an infinite family of graphs that admit GFRs despite not meeting Spiga’s bound. In our construction, the group G is the Higman group A(f, q0) for an infinite sequence of f and q0, having a nonabelian kernel and a complement of odd order.
DOI : 10.26493/1855-3974.2154.cda
Keywords: Cayley graph, Frobenius group, Suzuki 2-group, Frobenius graphical representation
@article{10_26493_1855_3974_2154_cda,
     author = {G\'abor Korchm\'aros and G\'abor P\'eter Nagy},
     title = {Graphical {Frobenius} representations of non-abelian groups},
     journal = {Ars Mathematica Contemporanea},
     pages = {89--102},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2021},
     doi = {10.26493/1855-3974.2154.cda},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2154.cda/}
}
TY  - JOUR
AU  - Gábor Korchmáros
AU  - Gábor Péter Nagy
TI  - Graphical Frobenius representations of non-abelian groups
JO  - Ars Mathematica Contemporanea
PY  - 2021
SP  - 89
EP  - 102
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2154.cda/
DO  - 10.26493/1855-3974.2154.cda
LA  - en
ID  - 10_26493_1855_3974_2154_cda
ER  - 
%0 Journal Article
%A Gábor Korchmáros
%A Gábor Péter Nagy
%T Graphical Frobenius representations of non-abelian groups
%J Ars Mathematica Contemporanea
%D 2021
%P 89-102
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2154.cda/
%R 10.26493/1855-3974.2154.cda
%G en
%F 10_26493_1855_3974_2154_cda
Gábor Korchmáros; Gábor Péter Nagy. Graphical Frobenius representations of non-abelian groups. Ars Mathematica Contemporanea, Tome 20 (2021) no. 1, pp. 89-102. doi : 10.26493/1855-3974.2154.cda. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2154.cda/

Cité par Sources :