Small cycles in the Pancake graph
Ars Mathematica Contemporanea, Tome 7 (2014) no. 1, pp. 237-246.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The Pancake graph is well known because of the open Pancake problem. It has the structure that any l–cycle, 6 ≤ l ≤ n!, can be embedded in the Pancake graph Pn, n ≥ 3. Recently it was shown that there are exactly n! / 6 independent 6–cycles and n!(n − 3) distinct 7–cycles in the graph. In this paper we characterize all distinct 8–cycles by giving their canonical forms as products of generating elements. It is shown that there are exactly n!(n3 + 12n2 − 103n + 176) / 16 distinct 8–cycles in Pn, n ≥ 4. A maximal set of independent 8–cycles contains n! / 8 of these.
DOI : 10.26493/1855-3974.214.0e8
Keywords: 05C15, 05C25, 05C38, 90B10
@article{10_26493_1855_3974_214_0e8,
     author = {Elena Konstantinova and Alexey Medvedev},
     title = {Small cycles in the {Pancake} graph},
     journal = {Ars Mathematica Contemporanea},
     pages = {237--246},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     doi = {10.26493/1855-3974.214.0e8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.214.0e8/}
}
TY  - JOUR
AU  - Elena Konstantinova
AU  - Alexey Medvedev
TI  - Small cycles in the Pancake graph
JO  - Ars Mathematica Contemporanea
PY  - 2014
SP  - 237
EP  - 246
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.214.0e8/
DO  - 10.26493/1855-3974.214.0e8
LA  - en
ID  - 10_26493_1855_3974_214_0e8
ER  - 
%0 Journal Article
%A Elena Konstantinova
%A Alexey Medvedev
%T Small cycles in the Pancake graph
%J Ars Mathematica Contemporanea
%D 2014
%P 237-246
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.214.0e8/
%R 10.26493/1855-3974.214.0e8
%G en
%F 10_26493_1855_3974_214_0e8
Elena Konstantinova; Alexey Medvedev. Small cycles in the Pancake graph. Ars Mathematica Contemporanea, Tome 7 (2014) no. 1, pp. 237-246. doi : 10.26493/1855-3974.214.0e8. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.214.0e8/

Cité par Sources :