Building maximal green sequences via component preserving mutations
Ars Mathematica Contemporanea, Tome 19 (2020) no. 2, pp. 249-275.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We introduce a new method for producing both maximal green and reddening sequences of quivers. The method, called component preserving mutations, generalizes the notion of direct sums of quivers and can be used as a tool to both recover known reddening sequences as well as find reddening sequences that were previously unknown. We use the method to produce and recover maximal green sequences for many bipartite recurrent quivers that show up in the study of periodicity of T-systems and Y-systems. Additionally, we show how our method relates to the dominance phenomenon recently considered by Reading. Given a maximal green sequence produced by our method, this relation to dominance gives a maximal green sequence for infinitely many other quivers. Other applications of this new methodology are explored including computing of quantum dilogarithm identities and determining minimal length maximal green sequences.
DOI : 10.26493/1855-3974.2128.ccf
Keywords: Cluster algebra, maximal green sequence, direct sum
@article{10_26493_1855_3974_2128_ccf,
     author = {Eric Bucher and John Machacek and Evan Runburg and Abe Yeck and Ethan Zwede},
     title = {Building maximal green sequences via component preserving mutations},
     journal = {Ars Mathematica Contemporanea},
     pages = {249--275},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2020},
     doi = {10.26493/1855-3974.2128.ccf},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2128.ccf/}
}
TY  - JOUR
AU  - Eric Bucher
AU  - John Machacek
AU  - Evan Runburg
AU  - Abe Yeck
AU  - Ethan Zwede
TI  - Building maximal green sequences via component preserving mutations
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 249
EP  - 275
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2128.ccf/
DO  - 10.26493/1855-3974.2128.ccf
LA  - en
ID  - 10_26493_1855_3974_2128_ccf
ER  - 
%0 Journal Article
%A Eric Bucher
%A John Machacek
%A Evan Runburg
%A Abe Yeck
%A Ethan Zwede
%T Building maximal green sequences via component preserving mutations
%J Ars Mathematica Contemporanea
%D 2020
%P 249-275
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2128.ccf/
%R 10.26493/1855-3974.2128.ccf
%G en
%F 10_26493_1855_3974_2128_ccf
Eric Bucher; John Machacek; Evan Runburg; Abe Yeck; Ethan Zwede. Building maximal green sequences via component preserving mutations. Ars Mathematica Contemporanea, Tome 19 (2020) no. 2, pp. 249-275. doi : 10.26493/1855-3974.2128.ccf. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2128.ccf/

Cité par Sources :