On resolving sets in the point-line incidence graph of PG(n, q)
Ars Mathematica Contemporanea, Tome 19 (2020) no. 2, pp. 231-247.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Lower and upper bounds on the size of resolving sets and semi-resolving sets for the point-line incidence graph of the finite projective space PG(n, q) are presented. It is proved that if n > 2 is fixed, then the metric dimension of the graph is asymptotically 2qn − 1.
DOI : 10.26493/1855-3974.2125.7b0
Keywords: Point-line incidence graph, resolving sets, finite projective spaces
@article{10_26493_1855_3974_2125_7b0,
     author = {Daniele Bartoli and Gy\"orgy Kiss and Stefano Marcugini and Fernanda Pambianco},
     title = {On resolving sets in the point-line incidence graph of {PG(n,} q)},
     journal = {Ars Mathematica Contemporanea},
     pages = {231--247},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2020},
     doi = {10.26493/1855-3974.2125.7b0},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2125.7b0/}
}
TY  - JOUR
AU  - Daniele Bartoli
AU  - György Kiss
AU  - Stefano Marcugini
AU  - Fernanda Pambianco
TI  - On resolving sets in the point-line incidence graph of PG(n, q)
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 231
EP  - 247
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2125.7b0/
DO  - 10.26493/1855-3974.2125.7b0
LA  - en
ID  - 10_26493_1855_3974_2125_7b0
ER  - 
%0 Journal Article
%A Daniele Bartoli
%A György Kiss
%A Stefano Marcugini
%A Fernanda Pambianco
%T On resolving sets in the point-line incidence graph of PG(n, q)
%J Ars Mathematica Contemporanea
%D 2020
%P 231-247
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2125.7b0/
%R 10.26493/1855-3974.2125.7b0
%G en
%F 10_26493_1855_3974_2125_7b0
Daniele Bartoli; György Kiss; Stefano Marcugini; Fernanda Pambianco. On resolving sets in the point-line incidence graph of PG(n, q). Ars Mathematica Contemporanea, Tome 19 (2020) no. 2, pp. 231-247. doi : 10.26493/1855-3974.2125.7b0. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2125.7b0/

Cité par Sources :