On generalized truncations of complete graphs
Ars Mathematica Contemporanea, Tome 19 (2020) no. 2, pp. 325-335.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

For a k-regular graph Γ and a graph Υ of order k, a generalized truncation of Γ by Υ is constructed by replacing each vertex of Γ with a copy of Υ. E. Eiben, R. Jajcay and P. Šparl introduced a method for constructing vertex-transitive generalized truncations. For convenience, we call a graph obtained by using Eiben et al.’s method a special generalized truncation. In their paper, Eiben et al. proposed a problem to classify special generalized truncations of a complete graph Kn by a cycle of length n − 1. In this paper, we completely solve this problem by demonstrating that with the exception of n = 6, every special generalized truncation of a complete graph Kn by a cycle of length n − 1 is a Cayley graph of AGL(1, n) where n is a prime power. Moreover, the full automorphism groups of all these graphs and the isomorphisms among them are determined.
DOI : 10.26493/1855-3974.2122.1e2
Keywords: Truncation, vertex-transitive, Cayley graph, automorphism group
@article{10_26493_1855_3974_2122_1e2,
     author = {Xue Wang and Fu-Gang Yin and Jin-Xin Zhou},
     title = {On generalized truncations of complete graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {325--335},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2020},
     doi = {10.26493/1855-3974.2122.1e2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2122.1e2/}
}
TY  - JOUR
AU  - Xue Wang
AU  - Fu-Gang Yin
AU  - Jin-Xin Zhou
TI  - On generalized truncations of complete graphs
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 325
EP  - 335
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2122.1e2/
DO  - 10.26493/1855-3974.2122.1e2
LA  - en
ID  - 10_26493_1855_3974_2122_1e2
ER  - 
%0 Journal Article
%A Xue Wang
%A Fu-Gang Yin
%A Jin-Xin Zhou
%T On generalized truncations of complete graphs
%J Ars Mathematica Contemporanea
%D 2020
%P 325-335
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2122.1e2/
%R 10.26493/1855-3974.2122.1e2
%G en
%F 10_26493_1855_3974_2122_1e2
Xue Wang; Fu-Gang Yin; Jin-Xin Zhou. On generalized truncations of complete graphs. Ars Mathematica Contemporanea, Tome 19 (2020) no. 2, pp. 325-335. doi : 10.26493/1855-3974.2122.1e2. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2122.1e2/

Cité par Sources :