Balancing polyhedra
Ars Mathematica Contemporanea, Tome 19 (2020) no. 1, pp. 95-124.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We define the mechanical complexity C(P) of a 3-dimensional convex polyhedron P, interpreted as a homogeneous solid, as the difference between the total number of its faces, edges and vertices and the number of its static equilibria; and the mechanical complexity C(S, U) of primary equilibrium classes (S, U)E with S stable and U unstable equilibria as the infimum of the mechanical complexity of all polyhedra in that class. We prove that the mechanical complexity of a class (S, U)E with S, U > 1 is the minimum of 2(f + v − S − U) over all polyhedral pairs (f, v), where a pair of integers is called a polyhedral pair if there is a convex polyhedron with f faces and v vertices. In particular, we prove that the mechanical complexity of a class (S, U)E is zero if and only if there exists a convex polyhedron with S faces and U vertices. We also give asymptotically sharp bounds for the mechanical complexity of the monostatic classes (1, U)E and (S, 1)E, and offer a complexity-dependent prize for the complexity of the Gömböc-class (1, 1)E. Dedicated to the memory of John Horton Conway.
DOI : 10.26493/1855-3974.2120.085
Keywords: Polyhedron, static equilibrium, monostatic polyhedron, f-vector
@article{10_26493_1855_3974_2120_085,
     author = {G\'abor Domokos and Fl\'ori\'an Kov\'acs and Zsolt L\'angi and Krisztina Reg\H{o}s and P\'eter T. Varga},
     title = {Balancing polyhedra},
     journal = {Ars Mathematica Contemporanea},
     pages = {95--124},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2020},
     doi = {10.26493/1855-3974.2120.085},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2120.085/}
}
TY  - JOUR
AU  - Gábor Domokos
AU  - Flórián Kovács
AU  - Zsolt Lángi
AU  - Krisztina Regős
AU  - Péter T. Varga
TI  - Balancing polyhedra
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 95
EP  - 124
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2120.085/
DO  - 10.26493/1855-3974.2120.085
LA  - en
ID  - 10_26493_1855_3974_2120_085
ER  - 
%0 Journal Article
%A Gábor Domokos
%A Flórián Kovács
%A Zsolt Lángi
%A Krisztina Regős
%A Péter T. Varga
%T Balancing polyhedra
%J Ars Mathematica Contemporanea
%D 2020
%P 95-124
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2120.085/
%R 10.26493/1855-3974.2120.085
%G en
%F 10_26493_1855_3974_2120_085
Gábor Domokos; Flórián Kovács; Zsolt Lángi; Krisztina Regős; Péter T. Varga. Balancing polyhedra. Ars Mathematica Contemporanea, Tome 19 (2020) no. 1, pp. 95-124. doi : 10.26493/1855-3974.2120.085. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2120.085/

Cité par Sources :