Relative Heffter arrays and biembeddings
Ars Mathematica Contemporanea, Tome 18 (2020) no. 2, pp. 241-271.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Relative Heffter arrays, denoted by Ht(m, n; s, k), have been introduced as a generalization of the classical concept of Heffter array. A Ht(m, n; s, k) is an m × n partially filled array with elements in ℤv, where v = 2nk + t, whose rows contain s filled cells and whose columns contain k filled cells, such that the elements in every row and column sum to zero and, for every x ∈ ℤv not belonging to the subgroup of order t, either x or −x appears in the array. In this paper we show how relative Heffter arrays can be used to construct biembeddings of cyclic cycle decompositions of the complete multipartite graph K(2nk + t)/t × t into an orientable surface. In particular, we construct such biembeddings providing integer globally simple square relative Heffter arrays for t = k = 3, 5, 7, 9 and n ≡ 3 (mod 4) and for k = 3 with t = n, 2n, any odd n.
DOI : 10.26493/1855-3974.2110.6f2
Keywords: Heffter array, biembedding, multipartite complete graph
@article{10_26493_1855_3974_2110_6f2,
     author = {Simone Costa and Anita Pasotti and Marco Antonio Pellegrini},
     title = {Relative {Heffter} arrays and biembeddings},
     journal = {Ars Mathematica Contemporanea},
     pages = {241--271},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2020},
     doi = {10.26493/1855-3974.2110.6f2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2110.6f2/}
}
TY  - JOUR
AU  - Simone Costa
AU  - Anita Pasotti
AU  - Marco Antonio Pellegrini
TI  - Relative Heffter arrays and biembeddings
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 241
EP  - 271
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2110.6f2/
DO  - 10.26493/1855-3974.2110.6f2
LA  - en
ID  - 10_26493_1855_3974_2110_6f2
ER  - 
%0 Journal Article
%A Simone Costa
%A Anita Pasotti
%A Marco Antonio Pellegrini
%T Relative Heffter arrays and biembeddings
%J Ars Mathematica Contemporanea
%D 2020
%P 241-271
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2110.6f2/
%R 10.26493/1855-3974.2110.6f2
%G en
%F 10_26493_1855_3974_2110_6f2
Simone Costa; Anita Pasotti; Marco Antonio Pellegrini. Relative Heffter arrays and biembeddings. Ars Mathematica Contemporanea, Tome 18 (2020) no. 2, pp. 241-271. doi : 10.26493/1855-3974.2110.6f2. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2110.6f2/

Cité par Sources :