Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website
@article{10_26493_1855_3974_2101_b76, author = {Alexander L. Gavrilyuk and Jano\v{s} Vidali and Jason S. Williford}, title = {On few-class {Q-polynomial} association schemes: feasible parameters and nonexistence results}, journal = {Ars Mathematica Contemporanea}, pages = {103--127}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2021}, doi = {10.26493/1855-3974.2101.b76}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2101.b76/} }
TY - JOUR AU - Alexander L. Gavrilyuk AU - Janoš Vidali AU - Jason S. Williford TI - On few-class Q-polynomial association schemes: feasible parameters and nonexistence results JO - Ars Mathematica Contemporanea PY - 2021 SP - 103 EP - 127 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2101.b76/ DO - 10.26493/1855-3974.2101.b76 LA - en ID - 10_26493_1855_3974_2101_b76 ER -
%0 Journal Article %A Alexander L. Gavrilyuk %A Janoš Vidali %A Jason S. Williford %T On few-class Q-polynomial association schemes: feasible parameters and nonexistence results %J Ars Mathematica Contemporanea %D 2021 %P 103-127 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2101.b76/ %R 10.26493/1855-3974.2101.b76 %G en %F 10_26493_1855_3974_2101_b76
Alexander L. Gavrilyuk; Janoš Vidali; Jason S. Williford. On few-class Q-polynomial association schemes: feasible parameters and nonexistence results. Ars Mathematica Contemporanea, Tome 20 (2021) no. 1, pp. 103-127. doi : 10.26493/1855-3974.2101.b76. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2101.b76/
Cité par Sources :