Clustering via the modified Petford-Welsh algorithm
Ars Mathematica Contemporanea, Tome 18 (2020) no. 1, pp. 33-49.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Detecting meaningful communities has become crucial to advance our knowledge in diverse research areas that deal with datasets which can be naturally represented as networks. By regarding vertex clustering as the opposite problem of vertex colouring, we were able to leverage the Petford-Welsh colouring algorithm to develop a fast, efficient, and highly-scalable decentralised clustering algorithm. Its greatest potential lies in outperforming conventional methods when the community structure is fairly clear-cut.
DOI : 10.26493/1855-3974.2079.7b1
Keywords: Graph algorithm, community detection, the Petford-Welsh algorithm, simulated annealing, complex networks
@article{10_26493_1855_3974_2079_7b1,
     author = {Barbara Ikica},
     title = {Clustering via the modified {Petford-Welsh} algorithm},
     journal = {Ars Mathematica Contemporanea},
     pages = {33--49},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2020},
     doi = {10.26493/1855-3974.2079.7b1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2079.7b1/}
}
TY  - JOUR
AU  - Barbara Ikica
TI  - Clustering via the modified Petford-Welsh algorithm
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 33
EP  - 49
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2079.7b1/
DO  - 10.26493/1855-3974.2079.7b1
LA  - en
ID  - 10_26493_1855_3974_2079_7b1
ER  - 
%0 Journal Article
%A Barbara Ikica
%T Clustering via the modified Petford-Welsh algorithm
%J Ars Mathematica Contemporanea
%D 2020
%P 33-49
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2079.7b1/
%R 10.26493/1855-3974.2079.7b1
%G en
%F 10_26493_1855_3974_2079_7b1
Barbara Ikica. Clustering via the modified Petford-Welsh algorithm. Ars Mathematica Contemporanea, Tome 18 (2020) no. 1, pp. 33-49. doi : 10.26493/1855-3974.2079.7b1. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2079.7b1/

Cité par Sources :