Cayley graphs of order 16p are hamiltonian
Ars Mathematica Contemporanea, Tome 5 (2012) no. 2, pp. 189-215.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Suppose G is a finite group, such that |G| = 16p, where p is prime. We show that if S is any generating set of G, then there is a hamiltonian cycle in the corresponding Cayley graph Cay(G; S).
DOI : 10.26493/1855-3974.207.8e0
Keywords: Cayley graph, hamiltonian cycle
@article{10_26493_1855_3974_207_8e0,
     author = {Stephen J. Curran and Dave Witte Morris and Joy Morris},
     title = {Cayley graphs of order 16p are hamiltonian},
     journal = {Ars Mathematica Contemporanea},
     pages = {189--215},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     doi = {10.26493/1855-3974.207.8e0},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.207.8e0/}
}
TY  - JOUR
AU  - Stephen J. Curran
AU  - Dave Witte Morris
AU  - Joy Morris
TI  - Cayley graphs of order 16p are hamiltonian
JO  - Ars Mathematica Contemporanea
PY  - 2012
SP  - 189
EP  - 215
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.207.8e0/
DO  - 10.26493/1855-3974.207.8e0
LA  - en
ID  - 10_26493_1855_3974_207_8e0
ER  - 
%0 Journal Article
%A Stephen J. Curran
%A Dave Witte Morris
%A Joy Morris
%T Cayley graphs of order 16p are hamiltonian
%J Ars Mathematica Contemporanea
%D 2012
%P 189-215
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.207.8e0/
%R 10.26493/1855-3974.207.8e0
%G en
%F 10_26493_1855_3974_207_8e0
Stephen J. Curran; Dave Witte Morris; Joy Morris. Cayley graphs of order 16p are hamiltonian. Ars Mathematica Contemporanea, Tome 5 (2012) no. 2, pp. 189-215. doi : 10.26493/1855-3974.207.8e0. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.207.8e0/

Cité par Sources :