Point-primitive generalised hexagons and octagons and projective linear groups
Ars Mathematica Contemporanea, Tome 21 (2021) no. 2, article no. 10, 9 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We discuss recent progress on the problem of classifying point-primitive generalised polygons. In the case of generalised hexagons and generalised octagons, this has reduced the problem to primitive actions of almost simple groups of Lie type. To illustrate how the natural geometry of these groups may be used in this study, we show that if S is a finite thick generalised hexagon or octagon with G ≤ Aut(S) acting point-primitively and the socle of G isomorphic to PSLn(q) where n ≥ 2, then the stabiliser of a point acts irreducibly on the natural module. We describe a strategy to prove that such a generalised hexagon or octagon S does not exist.
DOI : 10.26493/1855-3974.2049.3db
Keywords: Generalised hexagon, generalised octagon, generalised polygon, primitive permutation group
@article{10_26493_1855_3974_2049_3db,
     author = {Stephen P. Glasby and Emilio Pierro and Cheryl E. Praeger},
     title = {Point-primitive generalised hexagons and octagons and projective linear groups},
     journal = {Ars Mathematica Contemporanea},
     eid = {10},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     doi = {10.26493/1855-3974.2049.3db},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2049.3db/}
}
TY  - JOUR
AU  - Stephen P. Glasby
AU  - Emilio Pierro
AU  - Cheryl E. Praeger
TI  - Point-primitive generalised hexagons and octagons and projective linear groups
JO  - Ars Mathematica Contemporanea
PY  - 2021
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2049.3db/
DO  - 10.26493/1855-3974.2049.3db
LA  - en
ID  - 10_26493_1855_3974_2049_3db
ER  - 
%0 Journal Article
%A Stephen P. Glasby
%A Emilio Pierro
%A Cheryl E. Praeger
%T Point-primitive generalised hexagons and octagons and projective linear groups
%J Ars Mathematica Contemporanea
%D 2021
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2049.3db/
%R 10.26493/1855-3974.2049.3db
%G en
%F 10_26493_1855_3974_2049_3db
Stephen P. Glasby; Emilio Pierro; Cheryl E. Praeger. Point-primitive generalised hexagons and octagons and projective linear groups. Ars Mathematica Contemporanea, Tome 21 (2021) no. 2, article  no. 10, 9 p. doi : 10.26493/1855-3974.2049.3db. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2049.3db/

Cité par Sources :