Multivariate polynomials for generalized permutohedra
Ars Mathematica Contemporanea, Tome 22 (2022) no. 4, article no. 02, 19 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Using the notion of a Mahonian statistic on acyclic posets, we introduce a q-analogue of the h-polynomial of a simple generalized permutohedron. We focus primarily on the case of nestohedra and on explicit computations for many interesting examples, such as Sn-invariant nestohedra, graph associahedra, and Stanley-Pitman polytopes. For the usual (Stasheff) associahedron, our generalization yields an alternative q-analogue to the well-studied Narayana numbers.
DOI : 10.26493/1855-3974.2044.fd1
Keywords: Generalized permutohedron, h-polynomial, q-analogues
@article{10_26493_1855_3974_2044_fd1,
     author = {Eric Katz and McCabe Olsen},
     title = {Multivariate polynomials for generalized permutohedra},
     journal = {Ars Mathematica Contemporanea},
     eid = {02},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2022},
     doi = {10.26493/1855-3974.2044.fd1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2044.fd1/}
}
TY  - JOUR
AU  - Eric Katz
AU  - McCabe Olsen
TI  - Multivariate polynomials for generalized permutohedra
JO  - Ars Mathematica Contemporanea
PY  - 2022
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2044.fd1/
DO  - 10.26493/1855-3974.2044.fd1
LA  - en
ID  - 10_26493_1855_3974_2044_fd1
ER  - 
%0 Journal Article
%A Eric Katz
%A McCabe Olsen
%T Multivariate polynomials for generalized permutohedra
%J Ars Mathematica Contemporanea
%D 2022
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2044.fd1/
%R 10.26493/1855-3974.2044.fd1
%G en
%F 10_26493_1855_3974_2044_fd1
Eric Katz; McCabe Olsen. Multivariate polynomials for generalized permutohedra. Ars Mathematica Contemporanea, Tome 22 (2022) no. 4, article  no. 02, 19 p. doi : 10.26493/1855-3974.2044.fd1. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2044.fd1/

Cité par Sources :