Divergence zero quaternionic vector fields and Hamming graphs
Ars Mathematica Contemporanea, Tome 19 (2020) no. 2, pp. 189-208.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We give a possible extension of the definition of quaternionic power series, partial derivatives and vector fields in the case of two (and then several) non commutative (quaternionic) variables. In this setting we also investigate the problem of describing zero functions which are not null functions in the formal sense. A connection between an analytic condition and a graph theoretic property of a subgraph of a Hamming graph is shown, namely the condition that polynomial vector field has formal divergence zero is equivalent to connectedness of subgraphs of Hamming graphs H(d, 2). We prove that monomials in variables z and w are always linearly independent as functions only in bidegrees (p, 0), (p, 1), (0, q), (1, q) and (2, 2).
DOI : 10.26493/1855-3974.2033.974
Keywords: Quaternionic power series, bidegree full functions, Hamming graph, linearly independent quaternionic monomials
@article{10_26493_1855_3974_2033_974,
     author = {Jasna Prezelj and Fabio Vlacci},
     title = {Divergence zero quaternionic vector fields and {Hamming} graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {189--208},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2020},
     doi = {10.26493/1855-3974.2033.974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2033.974/}
}
TY  - JOUR
AU  - Jasna Prezelj
AU  - Fabio Vlacci
TI  - Divergence zero quaternionic vector fields and Hamming graphs
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 189
EP  - 208
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2033.974/
DO  - 10.26493/1855-3974.2033.974
LA  - en
ID  - 10_26493_1855_3974_2033_974
ER  - 
%0 Journal Article
%A Jasna Prezelj
%A Fabio Vlacci
%T Divergence zero quaternionic vector fields and Hamming graphs
%J Ars Mathematica Contemporanea
%D 2020
%P 189-208
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2033.974/
%R 10.26493/1855-3974.2033.974
%G en
%F 10_26493_1855_3974_2033_974
Jasna Prezelj; Fabio Vlacci. Divergence zero quaternionic vector fields and Hamming graphs. Ars Mathematica Contemporanea, Tome 19 (2020) no. 2, pp. 189-208. doi : 10.26493/1855-3974.2033.974. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2033.974/

Cité par Sources :