On the core of a unicyclic graph
Ars Mathematica Contemporanea, Tome 5 (2012) no. 2, pp. 325-331.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A set S ⊆ V is independent in a graph G = (V, E) if no two vertices from S are adjacent. By core(G) we mean the intersection of all maximum independent sets. The independence number α(G) is the cardinality of a maximum independent set, while μ(G) is the size of a maximum matching in G. A connected graph having only one cycle, say C, is a unicyclic graph. In this paper we prove that if G is a unicyclic graph of order n and n − 1 = α(G) + μ(G), then core(G) coincides with the union of cores of all trees in G − C.
DOI : 10.26493/1855-3974.201.6e1
Keywords: maximum independent set, core, matching, unicyclic graph, Konig-Egervary graph
@article{10_26493_1855_3974_201_6e1,
     author = {Vadim E. Levit and Eugen Mandrescu},
     title = {On the core of a unicyclic graph},
     journal = {Ars Mathematica Contemporanea},
     pages = {325--331},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     doi = {10.26493/1855-3974.201.6e1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.201.6e1/}
}
TY  - JOUR
AU  - Vadim E. Levit
AU  - Eugen Mandrescu
TI  - On the core of a unicyclic graph
JO  - Ars Mathematica Contemporanea
PY  - 2012
SP  - 325
EP  - 331
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.201.6e1/
DO  - 10.26493/1855-3974.201.6e1
LA  - en
ID  - 10_26493_1855_3974_201_6e1
ER  - 
%0 Journal Article
%A Vadim E. Levit
%A Eugen Mandrescu
%T On the core of a unicyclic graph
%J Ars Mathematica Contemporanea
%D 2012
%P 325-331
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.201.6e1/
%R 10.26493/1855-3974.201.6e1
%G en
%F 10_26493_1855_3974_201_6e1
Vadim E. Levit; Eugen Mandrescu. On the core of a unicyclic graph. Ars Mathematica Contemporanea, Tome 5 (2012) no. 2, pp. 325-331. doi : 10.26493/1855-3974.201.6e1. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.201.6e1/

Cité par Sources :