The thickness of the Kronecker product of graphs
Ars Mathematica Contemporanea, Tome 18 (2020) no. 2, pp. 339-357.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The thickness of a graph G is the minimum number of planar subgraphs whose union is G. In this paper, we present sharp lower and upper bounds for the thickness of the Kronecker product G × H of two graphs G and H. We also give the exact thickness numbers for the Kronecker product graphs Kn × K2, Km, n × K2 and Kn, n, n × K2.
DOI : 10.26493/1855-3974.1998.2f4
Keywords: Thickness, Kronecker product graph, planar decomposition
@article{10_26493_1855_3974_1998_2f4,
     author = {Xia Guo and Yan Yang},
     title = {The thickness of the {Kronecker} product of graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {339--357},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2020},
     doi = {10.26493/1855-3974.1998.2f4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1998.2f4/}
}
TY  - JOUR
AU  - Xia Guo
AU  - Yan Yang
TI  - The thickness of the Kronecker product of graphs
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 339
EP  - 357
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1998.2f4/
DO  - 10.26493/1855-3974.1998.2f4
LA  - en
ID  - 10_26493_1855_3974_1998_2f4
ER  - 
%0 Journal Article
%A Xia Guo
%A Yan Yang
%T The thickness of the Kronecker product of graphs
%J Ars Mathematica Contemporanea
%D 2020
%P 339-357
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1998.2f4/
%R 10.26493/1855-3974.1998.2f4
%G en
%F 10_26493_1855_3974_1998_2f4
Xia Guo; Yan Yang. The thickness of the Kronecker product of graphs. Ars Mathematica Contemporanea, Tome 18 (2020) no. 2, pp. 339-357. doi : 10.26493/1855-3974.1998.2f4. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1998.2f4/

Cité par Sources :