On the incidence maps of incidence structures
Ars Mathematica Contemporanea, Tome 20 (2021) no. 1, pp. 51-68.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

By using elementary linear algebra methods we exploit properties of the incidence map of certain incidence structures with finite block sizes. We give new and simple proofs of theorems of Kantor and Lehrer, and their infinitary version. Similar results are obtained also for diagrams geometries.By mean of an extension of Block’s Lemma on the number of orbits of an automorphism group of an incidence structure, we give informations on the number of orbits of: a permutation group (of possible infinite degree) on subsets of finite size; a collineation group of a projective and affine space (of possible infinite dimension) over a finite field on subspaces of finite dimension; a group of isometries of a classical polar space (of possible infinite rank) over a finite field on totally isotropic subspaces (or singular in case of orthogonal spaces) of finite dimension.Furthermore, when the structure is finite and the associated incidence matrix has full rank, we give an alternative proof of a result of Camina and Siemons. We then deduce that certain families of incidence structures have no sharply transitive sets of automorphisms acting on blocks.
DOI : 10.26493/1855-3974.1996.db7
Keywords: Incidence structure, incidence map, diagram geometry
@article{10_26493_1855_3974_1996_db7,
     author = {Tim Penttila and Alessandro Siciliano},
     title = {On the incidence maps of incidence structures},
     journal = {Ars Mathematica Contemporanea},
     pages = {51--68},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2021},
     doi = {10.26493/1855-3974.1996.db7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1996.db7/}
}
TY  - JOUR
AU  - Tim Penttila
AU  - Alessandro Siciliano
TI  - On the incidence maps of incidence structures
JO  - Ars Mathematica Contemporanea
PY  - 2021
SP  - 51
EP  - 68
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1996.db7/
DO  - 10.26493/1855-3974.1996.db7
LA  - en
ID  - 10_26493_1855_3974_1996_db7
ER  - 
%0 Journal Article
%A Tim Penttila
%A Alessandro Siciliano
%T On the incidence maps of incidence structures
%J Ars Mathematica Contemporanea
%D 2021
%P 51-68
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1996.db7/
%R 10.26493/1855-3974.1996.db7
%G en
%F 10_26493_1855_3974_1996_db7
Tim Penttila; Alessandro Siciliano. On the incidence maps of incidence structures. Ars Mathematica Contemporanea, Tome 20 (2021) no. 1, pp. 51-68. doi : 10.26493/1855-3974.1996.db7. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1996.db7/

Cité par Sources :