3-Connected planar graphs are 5-distinguishing colorable with two exceptions
Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 165-175.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A graph G is said to be d-distinguishing colorable if there is a d-coloring of G such that no automorphism of G except the identity map preserves colors. We shall prove that every 3-connected planar graph is 5-distinguishing colorable except K2,2,2 and C6 + overline(K)2 and that every 3-connected bipartite planar graph is 3-distinguishing colorable except Q3 and R(Q3).
DOI : 10.26493/1855-3974.199.a0e
Keywords: planar graphs, distinguishing number, distinguishing chromatic number
@article{10_26493_1855_3974_199_a0e,
     author = {Ga\v{s}per Fijav\v{z} and Seiya Negami and Terukazu Sano},
     title = {3-Connected planar graphs are 5-distinguishing colorable with two exceptions},
     journal = {Ars Mathematica Contemporanea},
     pages = {165--175},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.26493/1855-3974.199.a0e},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.199.a0e/}
}
TY  - JOUR
AU  - Gašper Fijavž
AU  - Seiya Negami
AU  - Terukazu Sano
TI  - 3-Connected planar graphs are 5-distinguishing colorable with two exceptions
JO  - Ars Mathematica Contemporanea
PY  - 2011
SP  - 165
EP  - 175
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.199.a0e/
DO  - 10.26493/1855-3974.199.a0e
LA  - en
ID  - 10_26493_1855_3974_199_a0e
ER  - 
%0 Journal Article
%A Gašper Fijavž
%A Seiya Negami
%A Terukazu Sano
%T 3-Connected planar graphs are 5-distinguishing colorable with two exceptions
%J Ars Mathematica Contemporanea
%D 2011
%P 165-175
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.199.a0e/
%R 10.26493/1855-3974.199.a0e
%G en
%F 10_26493_1855_3974_199_a0e
Gašper Fijavž; Seiya Negami; Terukazu Sano. 3-Connected planar graphs are 5-distinguishing colorable with two exceptions. Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 165-175. doi : 10.26493/1855-3974.199.a0e. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.199.a0e/

Cité par Sources :