Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website
@article{10_26493_1855_3974_198_541, author = {Alexandr V. Kostochka and Christopher J. Stocker}, title = {Graphs with maximum degree 5 are acyclically 7-colorable}, journal = {Ars Mathematica Contemporanea}, pages = {153--164}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2011}, doi = {10.26493/1855-3974.198.541}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.198.541/} }
TY - JOUR AU - Alexandr V. Kostochka AU - Christopher J. Stocker TI - Graphs with maximum degree 5 are acyclically 7-colorable JO - Ars Mathematica Contemporanea PY - 2011 SP - 153 EP - 164 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.198.541/ DO - 10.26493/1855-3974.198.541 LA - en ID - 10_26493_1855_3974_198_541 ER -
%0 Journal Article %A Alexandr V. Kostochka %A Christopher J. Stocker %T Graphs with maximum degree 5 are acyclically 7-colorable %J Ars Mathematica Contemporanea %D 2011 %P 153-164 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.198.541/ %R 10.26493/1855-3974.198.541 %G en %F 10_26493_1855_3974_198_541
Alexandr V. Kostochka; Christopher J. Stocker. Graphs with maximum degree 5 are acyclically 7-colorable. Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 153-164. doi : 10.26493/1855-3974.198.541. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.198.541/
Cité par Sources :