The Sierpiński product of graphs
Ars Mathematica Contemporanea, Tome 23 (2023) no. 1, article no. 01, 25 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

In this paper we introduce a product-like operation that generalizes the construction of the generalized Sierpiński graphs. Let G, H be graphs and let f: V(G) → V(H) be a function. Then the Sierpiński product of graphs G and H with respect to f, denoted by G ⊗f H, is defined as the graph on the vertex set V(G) × V(H), consisting of |V(G)| copies of H; for every edge {g, g′} of G there is an edge between copies gH and g′H of form {(g, f(g′), (g′, f(g))}.Some basic properties of the Sierpiński product are presented. In particular, we show that the graph G ⊗f H is connected if and only if both graphs G and H are connected and we present some conditions that G, H must fulfill for G ⊗f H to be planar. As for symmetry properties, we show which automorphisms of G and H extend to automorphisms of G ⊗f H. In several cases we can also describe the whole automorphism group of the graph G ⊗f H.Finally, we show how to extend the Sierpiński product to multiple factors in a natural way. By applying this operation n times to the same graph we obtain an alternative approach to the well-known n-th generalized Sierpiński graph.
DOI : 10.26493/1855-3974.1970.29e
Keywords: Sierpiński graphs, graph products, connectivity, planarity, symmetry
@article{10_26493_1855_3974_1970_29e,
     author = {Jurij Kovi\v{c} and Toma\v{z} Pisanski and Sara Sabrina Zemlji\v{c} and Arjana \v{Z}itnik},
     title = {The {Sierpi\'nski} product of graphs},
     journal = {Ars Mathematica Contemporanea},
     eid = {01},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2023},
     doi = {10.26493/1855-3974.1970.29e},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1970.29e/}
}
TY  - JOUR
AU  - Jurij Kovič
AU  - Tomaž Pisanski
AU  - Sara Sabrina Zemljič
AU  - Arjana Žitnik
TI  - The Sierpiński product of graphs
JO  - Ars Mathematica Contemporanea
PY  - 2023
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1970.29e/
DO  - 10.26493/1855-3974.1970.29e
LA  - en
ID  - 10_26493_1855_3974_1970_29e
ER  - 
%0 Journal Article
%A Jurij Kovič
%A Tomaž Pisanski
%A Sara Sabrina Zemljič
%A Arjana Žitnik
%T The Sierpiński product of graphs
%J Ars Mathematica Contemporanea
%D 2023
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1970.29e/
%R 10.26493/1855-3974.1970.29e
%G en
%F 10_26493_1855_3974_1970_29e
Jurij Kovič; Tomaž Pisanski; Sara Sabrina Zemljič; Arjana Žitnik. The Sierpiński product of graphs. Ars Mathematica Contemporanea, Tome 23 (2023) no. 1, article  no. 01, 25 p. doi : 10.26493/1855-3974.1970.29e. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1970.29e/

Cité par Sources :