Natural realizations of sparsity matroids
Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 141-151.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A hypergraph G with n vertices and m hyperedges with d endpoints each is (k, l)-sparse if for all sub-hypergraphs G' on n' vertices and m' edges, m' ≤ kn' − l. For integers k and l satisfying 0 ≤ l ≤ dk − 1, this is known to be a linearly representable matroidal family. Motivated by problems in rigidity theory, we give a new linear representation theorem for the (k, l)-sparse hypergraphs that is natural; i.e., the representing matrix captures the vertex-edge incidence structure of the underlying hypergraph G.
DOI : 10.26493/1855-3974.197.461
Keywords: Matroids, combinatorial rigidity, sparse graphs and hypergraphs
@article{10_26493_1855_3974_197_461,
     author = {Ileana Streinu and Louis Theran},
     title = {Natural realizations of sparsity matroids},
     journal = {Ars Mathematica Contemporanea},
     pages = {141--151},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.26493/1855-3974.197.461},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.197.461/}
}
TY  - JOUR
AU  - Ileana Streinu
AU  - Louis Theran
TI  - Natural realizations of sparsity matroids
JO  - Ars Mathematica Contemporanea
PY  - 2011
SP  - 141
EP  - 151
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.197.461/
DO  - 10.26493/1855-3974.197.461
LA  - en
ID  - 10_26493_1855_3974_197_461
ER  - 
%0 Journal Article
%A Ileana Streinu
%A Louis Theran
%T Natural realizations of sparsity matroids
%J Ars Mathematica Contemporanea
%D 2011
%P 141-151
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.197.461/
%R 10.26493/1855-3974.197.461
%G en
%F 10_26493_1855_3974_197_461
Ileana Streinu; Louis Theran. Natural realizations of sparsity matroids. Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 141-151. doi : 10.26493/1855-3974.197.461. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.197.461/

Cité par Sources :