Gray code numbers for graphs
Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 125-139.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A graph H has a Gray code of k-colourings if it is possible to list all of its k-colourings in such a way that consecutive elements in the list differ in the colour of exactly one vertex. We prove that for any graph H, there is a least integer k0(H) such that H has a Gray code of k-colourings whenever k ≥ k0(H). We then determine k0(H) whenever H is a complete graph, tree, or cycle.
DOI : 10.26493/1855-3974.196.0df
Keywords: graph colouring, cyclic Gray code
@article{10_26493_1855_3974_196_0df,
     author = {Kelly Choo and Gary MacGillivray},
     title = {Gray code numbers for graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {125--139},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.26493/1855-3974.196.0df},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.196.0df/}
}
TY  - JOUR
AU  - Kelly Choo
AU  - Gary MacGillivray
TI  - Gray code numbers for graphs
JO  - Ars Mathematica Contemporanea
PY  - 2011
SP  - 125
EP  - 139
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.196.0df/
DO  - 10.26493/1855-3974.196.0df
LA  - en
ID  - 10_26493_1855_3974_196_0df
ER  - 
%0 Journal Article
%A Kelly Choo
%A Gary MacGillivray
%T Gray code numbers for graphs
%J Ars Mathematica Contemporanea
%D 2011
%P 125-139
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.196.0df/
%R 10.26493/1855-3974.196.0df
%G en
%F 10_26493_1855_3974_196_0df
Kelly Choo; Gary MacGillivray. Gray code numbers for graphs. Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 125-139. doi : 10.26493/1855-3974.196.0df. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.196.0df/

Cité par Sources :