On the upper embedding of Steiner triple systems and Latin squares
Ars Mathematica Contemporanea, Tome 18 (2020) no. 1, pp. 127-135.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

It is proved that for any prescribed orientation of the triples of either a Steiner triple system or a Latin square of odd order, there exists an embedding in an orientable surface with the triples forming triangular faces and one extra large face.
DOI : 10.26493/1855-3974.1959.9c7
Keywords: Upper embedding, Steiner triple system, Latin square
@article{10_26493_1855_3974_1959_9c7,
     author = {Terry S. Griggs and Thomas A. McCourt and Jozef \v{S}ir\'a\v{n}},
     title = {On the upper embedding of {Steiner} triple systems and {Latin} squares},
     journal = {Ars Mathematica Contemporanea},
     pages = {127--135},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2020},
     doi = {10.26493/1855-3974.1959.9c7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1959.9c7/}
}
TY  - JOUR
AU  - Terry S. Griggs
AU  - Thomas A. McCourt
AU  - Jozef Širáň
TI  - On the upper embedding of Steiner triple systems and Latin squares
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 127
EP  - 135
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1959.9c7/
DO  - 10.26493/1855-3974.1959.9c7
LA  - en
ID  - 10_26493_1855_3974_1959_9c7
ER  - 
%0 Journal Article
%A Terry S. Griggs
%A Thomas A. McCourt
%A Jozef Širáň
%T On the upper embedding of Steiner triple systems and Latin squares
%J Ars Mathematica Contemporanea
%D 2020
%P 127-135
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1959.9c7/
%R 10.26493/1855-3974.1959.9c7
%G en
%F 10_26493_1855_3974_1959_9c7
Terry S. Griggs; Thomas A. McCourt; Jozef Širáň. On the upper embedding of Steiner triple systems and Latin squares. Ars Mathematica Contemporanea, Tome 18 (2020) no. 1, pp. 127-135. doi : 10.26493/1855-3974.1959.9c7. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1959.9c7/

Cité par Sources :