On the general position problem on Kneser graphs
Ars Mathematica Contemporanea, Tome 18 (2020) no. 2, pp. 273-280.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

In a graph G, a geodesic between two vertices x and y is a shortest path connecting x to y. A subset S of the vertices of G is in general position if no vertex of S lies on any geodesic between two other vertices of S. The size of a largest set of vertices in general position is the general position number that we denote by gp(G). Recently, Ghorbani et al. proved that for any k if n ≥ k3 − k2 + 2k − 2, then gp(Knn, k) = (n − 1 choose k − 1), where Knn, k denotes the Kneser graph. We improve on their result and show that the same conclusion holds for n ≥ 2.5k − 0.5 and this bound is best possible. Our main tools are a result on cross-intersecting families and a slight generalization of Bollobás’s inequality on intersecting set pair systems.
DOI : 10.26493/1855-3974.1957.a0f
Keywords: General position problem, Kneser graphs, intersection theorems
@article{10_26493_1855_3974_1957_a0f,
     author = {Bal\'azs Patk\'os},
     title = {On the general position problem on {Kneser} graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {273--280},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2020},
     doi = {10.26493/1855-3974.1957.a0f},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1957.a0f/}
}
TY  - JOUR
AU  - Balázs Patkós
TI  - On the general position problem on Kneser graphs
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 273
EP  - 280
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1957.a0f/
DO  - 10.26493/1855-3974.1957.a0f
LA  - en
ID  - 10_26493_1855_3974_1957_a0f
ER  - 
%0 Journal Article
%A Balázs Patkós
%T On the general position problem on Kneser graphs
%J Ars Mathematica Contemporanea
%D 2020
%P 273-280
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1957.a0f/
%R 10.26493/1855-3974.1957.a0f
%G en
%F 10_26493_1855_3974_1957_a0f
Balázs Patkós. On the general position problem on Kneser graphs. Ars Mathematica Contemporanea, Tome 18 (2020) no. 2, pp. 273-280. doi : 10.26493/1855-3974.1957.a0f. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1957.a0f/

Cité par Sources :