Distinguishing partitions and asymmetric uniform hypergraphs
Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 111-123.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A distinguishing partition for an action of a group Γ on a set X is a partition of X that is preserved by no nontrivial element of Γ. As a special case, a distinguishing partition of a graph is a partition of the vertex set that is preserved by no nontrivial automorphism. In this paper we provide a link between distinguishing partitions of complete equipartite graphs and asymmetric uniform hypergraphs. Suppose that m ≥ 1 and n ≥ 2. We show that an asymmetric n-uniform hypergraph with m edges exists if and only if m ≥ f(n), where f(2) = f(14) = 6, f(6) = 5, and f(n)= ⌊ log2(n + 1) ⌋ + 2 otherwise. It follows that a distinguishing partition of Km(n) = Kn, n, ..., n, or equivalently for the wreath product action Sn Wr Sm, exists if and only if m ≥ f(n).
DOI : 10.26493/1855-3974.195.d00
Keywords: complete equipartite graph, distinguishing number, distinguishing partition, asymmetric uniform hypergraph
@article{10_26493_1855_3974_195_d00,
     author = {M. N. Ellingham and Justin Z. Schroeder},
     title = {Distinguishing partitions and asymmetric uniform hypergraphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {111--123},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.26493/1855-3974.195.d00},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.195.d00/}
}
TY  - JOUR
AU  - M. N. Ellingham
AU  - Justin Z. Schroeder
TI  - Distinguishing partitions and asymmetric uniform hypergraphs
JO  - Ars Mathematica Contemporanea
PY  - 2011
SP  - 111
EP  - 123
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.195.d00/
DO  - 10.26493/1855-3974.195.d00
LA  - en
ID  - 10_26493_1855_3974_195_d00
ER  - 
%0 Journal Article
%A M. N. Ellingham
%A Justin Z. Schroeder
%T Distinguishing partitions and asymmetric uniform hypergraphs
%J Ars Mathematica Contemporanea
%D 2011
%P 111-123
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.195.d00/
%R 10.26493/1855-3974.195.d00
%G en
%F 10_26493_1855_3974_195_d00
M. N. Ellingham; Justin Z. Schroeder. Distinguishing partitions and asymmetric uniform hypergraphs. Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 111-123. doi : 10.26493/1855-3974.195.d00. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.195.d00/

Cité par Sources :