On 2-factors with long cycles in cubic graphs
Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 79-93.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Every 2-connected cubic graph G has a 2-factor, and much effort has gone into studying conditions that guarantee G to be Hamiltonian. We show that if G is not Hamiltonian, then G is either the Petersen graph or contains a 2-factor with a cycle of length at least 7. We also give infinite families of, respectively, 2- and 3-connected cubic graphs in which every 2-factor consists of cycles of length at most, respectively, 10 and 16.
DOI : 10.26493/1855-3974.194.abe
Keywords: Cubic graph, 2-factor, long cycle, snark, infinite graph
@article{10_26493_1855_3974_194_abe,
     author = {Andr\'e K\"undgen and R. Bruce Richter},
     title = {On 2-factors with long cycles in cubic graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {79--93},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.26493/1855-3974.194.abe},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.194.abe/}
}
TY  - JOUR
AU  - André Kündgen
AU  - R. Bruce Richter
TI  - On 2-factors with long cycles in cubic graphs
JO  - Ars Mathematica Contemporanea
PY  - 2011
SP  - 79
EP  - 93
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.194.abe/
DO  - 10.26493/1855-3974.194.abe
LA  - en
ID  - 10_26493_1855_3974_194_abe
ER  - 
%0 Journal Article
%A André Kündgen
%A R. Bruce Richter
%T On 2-factors with long cycles in cubic graphs
%J Ars Mathematica Contemporanea
%D 2011
%P 79-93
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.194.abe/
%R 10.26493/1855-3974.194.abe
%G en
%F 10_26493_1855_3974_194_abe
André Kündgen; R. Bruce Richter. On 2-factors with long cycles in cubic graphs. Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 79-93. doi : 10.26493/1855-3974.194.abe. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.194.abe/

Cité par Sources :