The symmetric genus spectrum of abelian groups
Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 627-636.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let S denote the set of positive integers that appear as the symmetric genus of a finite abelian group and let S0 denote the set of positive integers that appear as the strong symmetric genus of a finite abelian group. The main theorem of this paper is that S = S0. As a result, we obtain a set of necessary and sufficient conditions for an integer g to belong to S. This also shows that S has an asymptotic density and that it is approximately 0.3284.
DOI : 10.26493/1855-3974.1921.d6f
Keywords: Symmetric genus, strong symmetric genus, Riemann surface, abelian groups, genus spectrum, density
@article{10_26493_1855_3974_1921_d6f,
     author = {Coy L. May and Jay Zimmerman},
     title = {The symmetric genus spectrum of abelian groups},
     journal = {Ars Mathematica Contemporanea},
     pages = {627--636},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2019},
     doi = {10.26493/1855-3974.1921.d6f},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1921.d6f/}
}
TY  - JOUR
AU  - Coy L. May
AU  - Jay Zimmerman
TI  - The symmetric genus spectrum of abelian groups
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 627
EP  - 636
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1921.d6f/
DO  - 10.26493/1855-3974.1921.d6f
LA  - en
ID  - 10_26493_1855_3974_1921_d6f
ER  - 
%0 Journal Article
%A Coy L. May
%A Jay Zimmerman
%T The symmetric genus spectrum of abelian groups
%J Ars Mathematica Contemporanea
%D 2019
%P 627-636
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1921.d6f/
%R 10.26493/1855-3974.1921.d6f
%G en
%F 10_26493_1855_3974_1921_d6f
Coy L. May; Jay Zimmerman. The symmetric genus spectrum of abelian groups. Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 627-636. doi : 10.26493/1855-3974.1921.d6f. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1921.d6f/

Cité par Sources :