Hypergeometric degenerate Bernoulli polynomials and numbers
Ars Mathematica Contemporanea, Tome 18 (2020) no. 1, pp. 163-177.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Carlitz defined the degenerate Bernoulli polynomials βn(λ, x) by means of the generating function t((1 + λt)1/λ − 1)−1(1 + λt)x/λ. In 1875, Glaisher gave several interesting determinant expressions of numbers, including Bernoulli, Cauchy and Euler numbers. In this paper, we show some expressions and properties of hypergeometric degenerate Bernoulli polynomials βN, n(λ, x) and numbers, in particular, in terms of determinants.The coefficients of the polynomial βn(λ, 0) were completely determined by Howard in 1996. We determine the coefficients of the polynomial βN, n(λ, 0). Hypergeometric Bernoulli numbers and hypergeometric Cauchy numbers appear in the coefficients.
DOI : 10.26493/1855-3974.1907.3c2
Keywords: Bernoulli numbers, hypergeometric Bernoulli numbers, hypergeometric Cauchy numbers, hypergeometric functions, degenerate Bernoulli numbers, determinants, recurrence relations
@article{10_26493_1855_3974_1907_3c2,
     author = {Takao Komatsu},
     title = {Hypergeometric degenerate {Bernoulli} polynomials and numbers},
     journal = {Ars Mathematica Contemporanea},
     pages = {163--177},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2020},
     doi = {10.26493/1855-3974.1907.3c2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1907.3c2/}
}
TY  - JOUR
AU  - Takao Komatsu
TI  - Hypergeometric degenerate Bernoulli polynomials and numbers
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 163
EP  - 177
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1907.3c2/
DO  - 10.26493/1855-3974.1907.3c2
LA  - en
ID  - 10_26493_1855_3974_1907_3c2
ER  - 
%0 Journal Article
%A Takao Komatsu
%T Hypergeometric degenerate Bernoulli polynomials and numbers
%J Ars Mathematica Contemporanea
%D 2020
%P 163-177
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1907.3c2/
%R 10.26493/1855-3974.1907.3c2
%G en
%F 10_26493_1855_3974_1907_3c2
Takao Komatsu. Hypergeometric degenerate Bernoulli polynomials and numbers. Ars Mathematica Contemporanea, Tome 18 (2020) no. 1, pp. 163-177. doi : 10.26493/1855-3974.1907.3c2. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1907.3c2/

Cité par Sources :