The complete bipartite graphs which have exactly two orientably edge-transitive embeddings
Ars Mathematica Contemporanea, Tome 18 (2020) no. 2, pp. 371-379.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

In 2018, Fan and Li classified the complete bipartite graph Km, n that has a unique orientably edge-transitive embedding. In this paper, we extend this to give a complete classification of Km, n which have exactly two orientably edge-transitive embeddings.
DOI : 10.26493/1855-3974.1900.cc1
Keywords: Bipartite graphs, edge-transitive embeddings
@article{10_26493_1855_3974_1900_cc1,
     author = {Xue Yu and Ben Gong Lou and Wen Wen Fan},
     title = {The complete bipartite graphs which have exactly two orientably edge-transitive embeddings},
     journal = {Ars Mathematica Contemporanea},
     pages = {371--379},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2020},
     doi = {10.26493/1855-3974.1900.cc1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1900.cc1/}
}
TY  - JOUR
AU  - Xue Yu
AU  - Ben Gong Lou
AU  - Wen Wen Fan
TI  - The complete bipartite graphs which have exactly two orientably edge-transitive embeddings
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 371
EP  - 379
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1900.cc1/
DO  - 10.26493/1855-3974.1900.cc1
LA  - en
ID  - 10_26493_1855_3974_1900_cc1
ER  - 
%0 Journal Article
%A Xue Yu
%A Ben Gong Lou
%A Wen Wen Fan
%T The complete bipartite graphs which have exactly two orientably edge-transitive embeddings
%J Ars Mathematica Contemporanea
%D 2020
%P 371-379
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1900.cc1/
%R 10.26493/1855-3974.1900.cc1
%G en
%F 10_26493_1855_3974_1900_cc1
Xue Yu; Ben Gong Lou; Wen Wen Fan. The complete bipartite graphs which have exactly two orientably edge-transitive embeddings. Ars Mathematica Contemporanea, Tome 18 (2020) no. 2, pp. 371-379. doi : 10.26493/1855-3974.1900.cc1. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1900.cc1/

Cité par Sources :